The molarity is 0,41 mol/L.
To calculate the amount of C2H2 produced from H2O, we need to consider the stoichiometry of the reaction. The balanced equation for the reaction is 2H2O -> 2H2 + O2 -> 2C2H2. From 80 grams of H2O, we can calculate the amount of C2H2 produced using stoichiometry.
To find the mass of 1.54 moles of H2O, you can use the molar mass of water. The molar mass of H2O is 18.015 grams/mol. Therefore, the mass of 1.54 moles of H2O would be 1.54 moles * 18.015 grams/mol = approximately 27.75 grams.
1.002 M
The answer is 0,44 moles.
I suppose that this situation is not possible.
Molarity= Number of moles of solute/Liters of solution 50 grams KOH 700 ML to .7 Liters of h2o Molar Mass of KOH= 56 50 divided by 56 = .89 moles Molarity= .89 mol/.7 L = 1.27 MOLARITY
To calculate the amount of C2H2 produced from H2O, we need to consider the stoichiometry of the reaction. The balanced equation for the reaction is 2H2O -> 2H2 + O2 -> 2C2H2. From 80 grams of H2O, we can calculate the amount of C2H2 produced using stoichiometry.
To find the mass of 1.54 moles of H2O, you can use the molar mass of water. The molar mass of H2O is 18.015 grams/mol. Therefore, the mass of 1.54 moles of H2O would be 1.54 moles * 18.015 grams/mol = approximately 27.75 grams.
1 mole is equal to 18 grams of H2O, so 60 grams is 3.33 moles.
Let me help you a little: water is H2O
3,45 grams of H2O contain 1,154.10e23 oxygen atoms.
1.002 M
To have 1 mole of H2O, you would need to weigh out approximately 18 grams of water (H2O). This is because 1 mole of water molecules (H2O) has a molar mass of about 18 grams/mol (2 grams/mol for hydrogen x 2 atoms + 16 grams/mol for oxygen).
Molarity = moles of solute/Liters of solutionThat 3 kg of water would present a problem, but water = 1 gram/ml in density, so....3 kg = 3000 grams1g/ml H2O = 3000 grams H2O/X ml= 3000 ml = 3 Litersso,Molarity = 6 moles Na/3 Liters= 2 M NaOH-----------------
To calculate the number of molecules in 16.75 grams of H2O, we first need to convert grams to moles (using the molar mass of H2O), and then convert moles to molecules using Avogadro's number. The molar mass of H2O is 18.015 g/mol. After converting, there are approximately 3.52 x 10^23 molecules in 16.75 grams of H2O.
The answer is 0,44 moles.
I suppose that this situation is not possible.