To find the number of grams in 5.0x10^22 molecules of nitrogen monoxide (NO), you need to convert the number of molecules to moles and then from moles to grams. First, calculate the number of moles by dividing the number of molecules by Avogadro's number (6.022x10^23 molecules/mol). Then, use the molar mass of NO (30.01 g/mol) to convert moles to grams.
0.125 moles x 6.02x10^23 atoms/mole = 7.53x10^22 atoms
2.01x10^22 atoms x 1 mole/6.02x10^23 atoms = 0.0334 moles
0.0384 moles K x 6.02x10^23 atoms/mole = 2.31x10^22 atoms
the question is directing a discussion of Avagadro's number. If Nitrogen were an ideal gas ( it isn't) there would be 6,02 X 10 ^23 atoms
To find the number of grams in 5.0x10^22 molecules of nitrogen monoxide (NO), you need to convert the number of molecules to moles and then from moles to grams. First, calculate the number of moles by dividing the number of molecules by Avogadro's number (6.022x10^23 molecules/mol). Then, use the molar mass of NO (30.01 g/mol) to convert moles to grams.
the same amount would have to stay in grams, so if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.
55.64
first find the number of moles of nitrogen in 1.00g than times by 6.02*10^23 n(N)=1/14 * 6.02*10^23 =4.2*10^22 atoms
To convert grams to atoms, you need to first convert grams of nitrogen to moles using its molar mass (14.01 g/mol). Then, use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms. So, for 2.2 grams of nitrogen: Convert grams to moles: 2.2 g / 14.01 g/mol = 0.157 moles. Convert moles to atoms: 0.157 moles x 6.022 x 10^23 atoms/mol = 9.46 x 10^22 atoms of nitrogen.
if you mean 10^22 O atoms, then this is how you do it: (8.16X10^22)/2=4.08X10^22 so there are 4.08X10^22 molecules, divided by 6.022X10^23(1 mole) is .06775, so there are that many moles of CO2. If you wanted to know how many moles of overall atoms there were, there's 4.08X10^22 molecules, 1 C in each so 4.08X10^22 C, and 8.16X10^22 O=1.224X10^23, and that's how many atoms, so that divided by 1 mole is (most accurate answer i can get you) .2032547326 moles of atoms so .2032547326 moles of atoms or .06775 moles of molecules/CO2
0.125 moles x 6.02x10^23 atoms/mole = 7.53x10^22 atoms
2.01x10^22 atoms x 1 mole/6.02x10^23 atoms = 0.0334 moles
To determine the number of moles of fluorine present in 2.67 grams of nitrogen trifluoride (NF3), we first need to calculate the molar mass of NF3, which is 71.0 g/mol. Then we find the moles of NF3 in 2.67 g by dividing the mass by the molar mass: 2.67 g / 71.0 g/mol ≈ 0.038 moles. As there are three fluorine atoms in each molecule of NF3, there are 3 times more moles of fluorine: 0.038 moles NF3 x 3 = 0.114 moles of fluorine.
To find the number of moles, you need to divide the given number of iron atoms by Avogadro's number, which is approximately 6.022 x 10^23 atoms/mol. Therefore, for 5.22 x 10^22 iron atoms, the number of moles would be approximately 0.0867 moles.
To calculate the mass of 2.84 x 10^22 molecules of nitrogen gas, you first need to convert molecules to moles using Avogadro's number. Then, you can use the molar mass of nitrogen (28.02 g/mol) to determine the mass. The mass of 2.84 x 10^22 molecules of nitrogen gas would be approximately 5.04 grams.
The species is; Ca(NO3)2 ( NO3(-) is a polyatomic ion and is in parenthesis ) 7.5 grams Ca(NO3)2 (1 mole Ca(NO3)2/164.1 grams)(2 mole N/1 mole Ca(NO3)2)(6.022 X 10^23/1 mole N) = 5.5 X 10^22 atoms of nitrogen