14 grams of nitrogen have 6.023 x 1023 atoms
So 2.2 grams will have (6.023 x 1023 x 2.2)/14 = 29.15 x 1023 atoms
To find this, you need to first calculate the molar mass of gold (Au), which is 196.97 g/mol. Next, you convert the given mass (5 grams) to moles by dividing by the molar mass. Then, you use Avogadro's number (6.022 x 10^23) to convert moles to atoms. In this case, there are approximately 6.022 x 10^22 atoms in 5 grams of gold.
To find the mass of 3.40x10^22 helium atoms, you need to know the molar mass of helium, which is 4.0026 g/mol. So, the mass of 3.40x10^22 helium atoms would be 3.40x10^22 atoms * (4.0026 g/mol/6.022x10^23 atoms/mol) ≈ 2.27 grams.
There are approximately 6.023 x 10^23 atoms in 1 mole of any element, including argon. The molar mass of argon is approximately 40 grams/mol, so 22 grams of argon would contain about (6.023 x 10^23 atoms/mol) * (22 grams / 40 grams/mol) = 3.34 x 10^23 atoms of argon.
first find the number of moles of nitrogen in 1.00g than times by 6.02*10^23 n(N)=1/14 * 6.02*10^23 =4.2*10^22 atoms
To determine the number of atoms in 5.72 grams of glucose, you first need to calculate the number of moles of glucose using its molar mass. Then, you can use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms. Given that the molar mass of glucose is approximately 180.16 g/mol, you can then calculate the number of atoms in 5.72 grams of glucose.
the question is directing a discussion of Avagadro's number. If Nitrogen were an ideal gas ( it isn't) there would be 6,02 X 10 ^23 atoms
To find the number of grams in 5.0x10^22 molecules of nitrogen monoxide (NO), you need to convert the number of molecules to moles and then from moles to grams. First, calculate the number of moles by dividing the number of molecules by Avogadro's number (6.022x10^23 molecules/mol). Then, use the molar mass of NO (30.01 g/mol) to convert moles to grams.
To find this, you need to first calculate the molar mass of gold (Au), which is 196.97 g/mol. Next, you convert the given mass (5 grams) to moles by dividing by the molar mass. Then, you use Avogadro's number (6.022 x 10^23) to convert moles to atoms. In this case, there are approximately 6.022 x 10^22 atoms in 5 grams of gold.
if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.
To find the mass of 3.40x10^22 helium atoms, you need to know the molar mass of helium, which is 4.0026 g/mol. So, the mass of 3.40x10^22 helium atoms would be 3.40x10^22 atoms * (4.0026 g/mol/6.022x10^23 atoms/mol) ≈ 2.27 grams.
There are approximately 6.023 x 10^23 atoms in 1 mole of any element, including argon. The molar mass of argon is approximately 40 grams/mol, so 22 grams of argon would contain about (6.023 x 10^23 atoms/mol) * (22 grams / 40 grams/mol) = 3.34 x 10^23 atoms of argon.
the same amount would have to stay in grams, so if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.
the same amount would have to stay in grams, so if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.
The formula N2O5 shows that there are 2/5 as many nitrogen atoms as oxygen atoms in the compound. Therefore, the number of nitrogen atoms required is (2/5)(7.05 X 1022) or 2.82 X 1022 atoms. The gram atomic mass of nitrogen is 14.0067 and, by definition, consists of Avogadro's Number of atoms. Therefore, the mass of nitrogen required to react with the specified amount of oxygen to produce the specified compound is 14.0067 [(2.82 X 1022)/(6.022 X 1023] or 0.656 grams of nitrogen, to the justified number of significant digits.
The species is; Ca(NO3)2 ( NO3(-) is a polyatomic ion and is in parenthesis ) 7.5 grams Ca(NO3)2 (1 mole Ca(NO3)2/164.1 grams)(2 mole N/1 mole Ca(NO3)2)(6.022 X 10^23/1 mole N) = 5.5 X 10^22 atoms of nitrogen
first find the number of moles of nitrogen in 1.00g than times by 6.02*10^23 n(N)=1/14 * 6.02*10^23 =4.2*10^22 atoms
To calculate the number of atoms in 13.2 grams of iron, you first need to determine the molar mass of iron, which is approximately 55.85 g/mol. Then, you can use Avogadro's number (6.022 x 10^23 atoms/mol) to convert grams to atoms. Therefore, there are about 4.49 x 10^22 atoms in 13.2 grams of iron.