TAGC
To determine the base sequence on the complementary DNA strand, you need to know the base sequence of one strand. DNA is composed of four bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The complementary base pairing rules state that A pairs with T and C pairs with G. For example, if the given strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'.
The base sequence on the complementary DNA strand will be GCATCC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, for each base in the original sequence CGTAGG, the complementary bases are as follows: C pairs with G, G pairs with C, T pairs with A, A pairs with T, G pairs with C, and G pairs with C again.
It will be ttaaccgg because adenine pairs with thymine and guanine with cytocine.
The genetic code on the complementary strand refers to the sequence of nucleotides that pairs with a corresponding sequence on the original DNA strand. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, if the original strand has a sequence like ACGT, the complementary strand would have the sequence TGCA. This complementary base pairing is crucial for DNA replication and transcription processes.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
To determine the base sequence on the complementary DNA strand, you need to know the base sequence of one strand. DNA is composed of four bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The complementary base pairing rules state that A pairs with T and C pairs with G. For example, if the given strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'.
If one strand of DNA has a nucleotide base sequence of tcaggtccat, its complementary strand is agtccaggta. Adenine pairs with thymine, while guanine pairs with cytosine.
The base sequence on the complementary DNA strand will be GCATCC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, for each base in the original sequence CGTAGG, the complementary bases are as follows: C pairs with G, G pairs with C, T pairs with A, A pairs with T, G pairs with C, and G pairs with C again.
It will be ttaaccgg because adenine pairs with thymine and guanine with cytocine.
The sequence on the strand of the helix is TACCGGATC.
If the base sequence on one strand of DNA is A-T-G-C, then the complementary strand would have the sequence T-A-C-G. In DNA, adenine pairs with thymine and guanine pairs with cytosine.
The genetic code on the complementary strand refers to the sequence of nucleotides that pairs with a corresponding sequence on the original DNA strand. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, if the original strand has a sequence like ACGT, the complementary strand would have the sequence TGCA. This complementary base pairing is crucial for DNA replication and transcription processes.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
You can predict the base sequence of one strand of DNA if you know the sequence of the other strand because DNA strands are complementary. Adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). This complementary base pairing allows the sequence of one strand to dictate the sequence of the other, enabling accurate predictions of the base sequence.
In DNA, the other strand of the helix would have complementary base pairs to the original strand. Adenine pairs with thymine, and cytosine pairs with guanine. So, if one strand has the sequence ATTGC, the complementary strand would be TAACG.
To provide a new strand of DNA, I would need the sequence of the original strand. DNA strands are complementary, meaning that adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). If you provide the original strand, I can help you determine the complementary sequence.
The complementary DNA strand to TAC-CGG-AGT is ATG-GCC-TCA. In DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G), so the complementary strand is created by matching these base pairs.