Adrenine (A) pairs with Thymine (T)
Cytosine (C) pairs with Guanine (G)
The base sequence complementary to CGAC in a DNA molecule is GCTG. In DNA, cytosine (C) pairs with guanine (G), and adenine (A) pairs with thymine (T), so you would replace each base with its complementary counterpart. Therefore, C pairs with G, G pairs with C, A pairs with T, and C pairs with G.
Base pairing rules dictate that in DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G). These pairs are called complementary base pairs because they always bond together due to their specific chemical structures and hydrogen bonding capabilities. Together, these rules ensure the accurate replication and transcription of DNA.
Complementary
The complementary base sequence for the DNA segment ACGT would be TGCA. This is because adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G) in DNA. Therefore, the base pairing rules dictate that A pairs with T, C pairs with G, G pairs with C, and T pairs with A.
Adenine is the purine base that pairs with cytosine through hydrogen bonding in DNA. This base pairing is a key component of the complementary nature of DNA strands.
The complementary base pairs in DNA are adenine (A) with thymine (T), and cytosine (C) with guanine (G).
Complementary base pairs are nucleotide bases in DNA that always bond together in a specific way: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). An example of complementary base pairs is A-T and C-G.
The correct complementary base pairs in DNA are adenine (A) with thymine (T), and cytosine (C) with guanine (G).
CCGTAGGCC is a sequence of DNA base pairs. It represents the complementary DNA strand to the original sequence GGCTACGG, where each base pairs with its complementary base (A with T and C with G).
The base sequence complementary to CGAC in a DNA molecule is GCTG. In DNA, cytosine (C) pairs with guanine (G), and adenine (A) pairs with thymine (T), so you would replace each base with its complementary counterpart. Therefore, C pairs with G, G pairs with C, A pairs with T, and C pairs with G.
Adrenine (A) pairs with Thymine (T) Cytosine (C) pairs with Guanine (G)
Base pairing rules dictate that in DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G). These pairs are called complementary base pairs because they always bond together due to their specific chemical structures and hydrogen bonding capabilities. Together, these rules ensure the accurate replication and transcription of DNA.
Complementary
The base cytosine pairs with guanine via three hydrogen bonds. They are complementary base pairs in the DNA double helix.
In biotechnology, base pairs refer to the complementary pairing of nitrogenous bases in DNA molecules. Adenine pairs with thymine, and guanine pairs with cytosine. Understanding base pairs is crucial for techniques like PCR and DNA sequencing.
If there are 40 pairs containing base C, the remaining pairs must contain the complementary base, G. Since each base pair must contain one A and one T (complementary to each other), the number of pairs containing base A would be the same as the number containing base T. Therefore, there would be 60 pairs containing base A.
The complementary base sequence for the DNA segment ACGT would be TGCA. This is because adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G) in DNA. Therefore, the base pairing rules dictate that A pairs with T, C pairs with G, G pairs with C, and T pairs with A.