Action potentials propagate from an influx of Na and an efflux of K along an excitable cell (neuronal or muscular). If you think of a zipper with two heads attached to the top, as one zipper head traverses down and opens the zipper the next zipper goes down to close. The first zipper head is the action potential going down an axon. It is able to proceed because there is a membrane potential difference between outside the cell and inside the cell. A normal neuron has a membrane potential of -70mV. That means inside the cell is more negative than outside the cell. So when an action potential is elicited, Na rushes in and K rushes out. This produces slight changes in the membrane potential causing it to go up to around +35mV (inside cell). As this happens right next to that Na and K channels are more Na and K channels that see this happening and they open up in response. This occurs like the first zipper head going down. The second zipper going down is the efflux of Na and influx of K to restore the membrane potential back to normal. When the action potential reaches the end, called terminal bouton, calcium channels that are there waiting for this action potential open up and allow a rush of calcium into the terminal bouton. The calcium serves a separate function to push out little vesicles called neurotransmitters out of the cell to continue an action potential into a different cell.
The calcium ion is responsible for causing the presynaptic vesicle to fuse to the axon membrane in a process called exocytosis. When an action potential reaches the presynaptic terminal, calcium ions enter the terminal and trigger the fusion of the vesicle with the axon membrane, releasing neurotransmitters into the synaptic cleft.
Calcium ions (Ca²⁺) must flow into the presynaptic cell for neurotransmitter release. When an action potential reaches the presynaptic terminal, voltage-gated calcium channels open, allowing Ca²⁺ to enter the cell. This influx of calcium triggers the fusion of neurotransmitter-containing vesicles with the presynaptic membrane, leading to the release of neurotransmitters into the synaptic cleft.
The presynaptic cell that must have action potentials to produce one or more action potentials in the postsynaptic cell is the neuron releasing neurotransmitters at the synapse. When an action potential reaches the presynaptic terminal, it triggers the release of neurotransmitters into the synaptic cleft, which then bind to receptors on the postsynaptic cell membrane, leading to the generation of an action potential in the postsynaptic cell.
Calcium ions cause the neurotransmitter vesicles to fuse with the axon terminal. When an action potential reaches the axon terminal, voltage-gated calcium ion pores are opened, allowing calcium ions into the axon terminal. These ions initiate the release of neurotransmitter vesicles stored on elements of the cytoskeleton located near the presynaptic membrane; they then travel to the presynaptic membrane, where they first dock, and then fuse with the presynaptic membrane, forming an opening or pore through which the neurotransmitters are released into the synaptic cleft.
When an action potential reaches the axon terminal of the presynaptic neuron, it triggers the release of neurotransmitters into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic neuron, leading to changes in its membrane potential. This process either excites or inhibits the postsynaptic neuron, depending on the neurotransmitter and receptor type involved.
When an action potential reaches an axon terminal, it triggers the release of neurotransmitters into the synaptic cleft.
When an action potential reaches the nerve terminal, it triggers the release of neurotransmitters into the synapse.
The calcium ion is responsible for causing the presynaptic vesicle to fuse to the axon membrane in a process called exocytosis. When an action potential reaches the presynaptic terminal, calcium ions enter the terminal and trigger the fusion of the vesicle with the axon membrane, releasing neurotransmitters into the synaptic cleft.
When an action potential reaches the nerve terminal, it triggers the release of neurotransmitters into the synapse, which then transmit signals to the next neuron or target cell.
When the action potential reaches the axon terminal, it triggers the release of neurotransmitters into the synapse, which then bind to receptors on the neighboring neuron, continuing the signal transmission.
Calcium ions (Ca²⁺) must flow into the presynaptic cell for neurotransmitter release. When an action potential reaches the presynaptic terminal, voltage-gated calcium channels open, allowing Ca²⁺ to enter the cell. This influx of calcium triggers the fusion of neurotransmitter-containing vesicles with the presynaptic membrane, leading to the release of neurotransmitters into the synaptic cleft.
When the action potential reaches the button(axon terminal) of the presynaptic neuron the depolarization causes voltage gated calcium channels to open increasing intracellular calcium content. This causes synaptic vesicles to fuse to the membrane and release neurotransmitters that bind to the post synaptic neuron and create a chemical action potential.
The presynaptic cell that must have action potentials to produce one or more action potentials in the postsynaptic cell is the neuron releasing neurotransmitters at the synapse. When an action potential reaches the presynaptic terminal, it triggers the release of neurotransmitters into the synaptic cleft, which then bind to receptors on the postsynaptic cell membrane, leading to the generation of an action potential in the postsynaptic cell.
After the action potential reaches the presynaptic terminal, voltage-gated calcium channels open, leading to an influx of calcium ions. This triggers the release of neurotransmitters into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to depolarization and the generation of a new action potential in the postsynaptic neuron.
Let's picture a presynaptic neuron, a synaptic cleft, and a postsynaptic neuron. An action potential reaches the terminal of a presynaptic neurone and triggers an opening of Ca ions enters into the depolarized terminal. This influx of Ca ions causes the presynaptic vesicles to fuse with the presynaptic membrane. This releases the neurotransmitters into the synaptic cleft. The neurotransmitters diffuse through the synaptic cleft and bind to specific postsynaptic membrane receptors. This binding changes the receptors into a ion channel that allows cations like Na to enter into the postsynaptic neuron. As Na enters the postsynaptic membrane, it begins to depolarize and an action potential is generated.
Communication across a synapse is initiated by the release of a neurotransmitter from the axon terminal of the presynaptic neuron. When an action potential reaches the axon terminal, it triggers the influx of calcium ions, leading to the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. This process causes the neurotransmitters to be released into the synaptic cleft, where they bind to receptors on the postsynaptic neuron and facilitate communication.
Calcium ions trigger the release of neurotransmitter at the presynaptic membrane. When an action potential reaches the presynaptic terminal, it causes voltage-gated calcium channels to open, allowing calcium ions to enter the cell. The influx of calcium ions triggers the fusion of synaptic vesicles with the presynaptic membrane, leading to the release of neurotransmitter into the synaptic cleft.