answersLogoWhite

0

3'-TACCGGAT-5' 5'-ATGGCCTA-3' Just remember your complementary base-pairs, AT and GC, and the fact the DS-DNA has stands running in each direction that are polar opposites. Easy as pie.

User Avatar

Wiki User

17y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is the nucleotides sequence of the mRNA strand you build?

The nucleotide sequence of the mRNA strand is determined by the DNA template strand during transcription. If the DNA template sequence is, for example, 3'-ATCGTAGC-5', the corresponding mRNA sequence synthesized would be 5'-UAGCAUCG-3'. The mRNA sequence consists of complementary RNA nucleotides, where adenine (A) pairs with uracil (U) and cytosine (C) pairs with guanine (G).


Which stand of mrna would be made during transcription using the DNA straind?

During transcription, the mRNA strand is synthesized using the template DNA strand, which runs in the 3' to 5' direction. The mRNA is created in the 5' to 3' direction, meaning that RNA polymerase adds complementary RNA nucleotides to the growing strand. For example, if the DNA template strand has a sequence of 3'-ATCGTA-5', the resulting mRNA would have the sequence 5'-UAGCAU-3'.


What is the sequence of the template strand if a nontenplate strand has the sequence 5'ATGGGCGC3'?

To determine the sequence of the template strand, you need to find the complementary bases to the nontemplate strand (5' ATGGGCGC 3'). The complementary bases are A-T and G-C. Therefore, the sequence of the template strand will be 3' TACCCGCG 5', written in the opposite direction to maintain the 5' to 3' orientation.


How many amino acids would be strung together from a sequence of 15 bases?

How many different arrangement of nucleotides are possible in a strand of DNA that is 15 nucleotides long?Read more: How_many_different_arrangement_of_nucleotides_are_possible_in_a_strand_of_DNA_that_is_15_nucleotides_long


Match this sequence of DNA 5-caagtggaat-3 with its complementary DNA strand?

3-gttcacctta-5

Related Questions

How many amino acids would be strung together from a sequence of 15 bases?

How many different arrangement of nucleotides are possible in a strand of DNA that is 15 nucleotides long?Read more: How_many_different_arrangement_of_nucleotides_are_possible_in_a_strand_of_DNA_that_is_15_nucleotides_long


Why does a DNA strand grow only in the 5' to 3' direction?

A DNA strand grows only in the 5' to 3' direction because the enzyme that builds the new strand, called DNA polymerase, can only add new nucleotides to the 3' end of the existing strand. This is due to the structure of the nucleotides and the way they are connected in the DNA molecule.


What is the nucleotide sequence of the complementary strand of the dna molecule t t c g a a t t g c?

The sequence of nucleotides of the complementary strand will be the nucleotides which bind to the nucleotides of the template. In DNA, adenine binds to thymine and cytosine binds to guanine. The complementary strand will therefore have an adenine where the template strand has a thymine, a guanine where the template has a cytosine, etc. For example: If the template strand is ATG-GGC-CTA-GCT Then the complementary strand would be TAC-CCG-GAT-CGA


What end of a growing strand are DNA nucleotides added to?

5' end (nucleotides are added from 3' toward 5')


An okazaki fragment has which of the following arrangements?

An Okazaki fragment is a short, newly synthesized DNA fragment that is formed on the lagging strand during DNA replication. It is composed of a short RNA primer at the 5' end and DNA nucleotides that extend toward the replication fork.


During DNA replication a primer attaches to a template strand of DNA and begins a new strand. After the primer has attached an enzyme extends the new strand of DNA by adding nucleotides that correspon?

The enzyme responsible for extending the new DNA strand by adding nucleotides is DNA polymerase. It reads the template strand and adds complementary nucleotides to form a new DNA strand. DNA polymerase can only add nucleotides in the 5' to 3' direction.


The direction of synthesis of an RNA transcript is?

transcription:"the first step in protein synthesis, a sequence of nucleotide bases becomes exposed in an unwound region of a DNA strand. That sequence acts as a template upon which a single strand of RNA - a transcript - is synthesized from free nucleotides."The synthesis of an RNA molecule from the DNA template strand is called transcription.


How does DNA go from 5' to 3' during the process of replication?

During DNA replication, the enzyme DNA polymerase adds new nucleotides to the growing DNA strand in a specific direction, from the 5' end to the 3' end. This is because DNA polymerase can only add nucleotides to the 3' end of the existing strand, resulting in the new strand being synthesized in the 5' to 3' direction.


Why does a new DNA strand elongate only in the 5' to 3' direction during replication?

During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.


What are the key differences between 5' and 3' DNA strands and how do these differences impact genetic processes?

The key difference between 5' and 3' DNA strands is the direction in which the nucleotides are arranged. In a 5' DNA strand, the nucleotides are arranged from the 5' end to the 3' end, while in a 3' DNA strand, the nucleotides are arranged from the 3' end to the 5' end. This impacts genetic processes because DNA replication and transcription occur in a specific direction, with enzymes moving along the DNA strand in a 5' to 3' direction. The orientation of the DNA strand determines the direction in which these processes can occur, affecting how genetic information is copied and expressed.


What is the directionality of DNA synthesis, specifically in terms of the orientation of nucleotides being added from the 5' to 3' prime end?

During DNA synthesis, nucleotides are added in a specific directionality, moving from the 5' to the 3' end. This means that new nucleotides are added to the growing DNA strand in a continuous manner, with the 5' end of the new nucleotide attaching to the 3' end of the existing strand.


What is the process of DNA synthesis from 5' to 3' direction?

During DNA synthesis, new nucleotides are added to the growing DNA strand in the 5' to 3' direction. This means that nucleotides are added to the 3' end of the existing strand, as DNA polymerase can only add nucleotides in this direction. This process ensures that the new DNA strand is synthesized in the correct orientation and maintains the genetic information encoded in the original DNA template.