3'-TACCGGAT-5' 5'-ATGGCCTA-3' Just remember your complementary base-pairs, AT and GC, and the fact the DS-DNA has stands running in each direction that are polar opposites. Easy as pie.
The nucleotide sequence of the mRNA strand is determined by the DNA template strand during transcription. If the DNA template sequence is, for example, 3'-ATCGTAGC-5', the corresponding mRNA sequence synthesized would be 5'-UAGCAUCG-3'. The mRNA sequence consists of complementary RNA nucleotides, where adenine (A) pairs with uracil (U) and cytosine (C) pairs with guanine (G).
During transcription, the mRNA strand is synthesized using the template DNA strand, which runs in the 3' to 5' direction. The mRNA is created in the 5' to 3' direction, meaning that RNA polymerase adds complementary RNA nucleotides to the growing strand. For example, if the DNA template strand has a sequence of 3'-ATCGTA-5', the resulting mRNA would have the sequence 5'-UAGCAU-3'.
To determine the sequence of the template strand, you need to find the complementary bases to the nontemplate strand (5' ATGGGCGC 3'). The complementary bases are A-T and G-C. Therefore, the sequence of the template strand will be 3' TACCCGCG 5', written in the opposite direction to maintain the 5' to 3' orientation.
How many different arrangement of nucleotides are possible in a strand of DNA that is 15 nucleotides long?Read more: How_many_different_arrangement_of_nucleotides_are_possible_in_a_strand_of_DNA_that_is_15_nucleotides_long
3-gttcacctta-5
How many different arrangement of nucleotides are possible in a strand of DNA that is 15 nucleotides long?Read more: How_many_different_arrangement_of_nucleotides_are_possible_in_a_strand_of_DNA_that_is_15_nucleotides_long
A DNA strand grows only in the 5' to 3' direction because the enzyme that builds the new strand, called DNA polymerase, can only add new nucleotides to the 3' end of the existing strand. This is due to the structure of the nucleotides and the way they are connected in the DNA molecule.
The sequence of nucleotides of the complementary strand will be the nucleotides which bind to the nucleotides of the template. In DNA, adenine binds to thymine and cytosine binds to guanine. The complementary strand will therefore have an adenine where the template strand has a thymine, a guanine where the template has a cytosine, etc. For example: If the template strand is ATG-GGC-CTA-GCT Then the complementary strand would be TAC-CCG-GAT-CGA
5' end (nucleotides are added from 3' toward 5')
An Okazaki fragment is a short, newly synthesized DNA fragment that is formed on the lagging strand during DNA replication. It is composed of a short RNA primer at the 5' end and DNA nucleotides that extend toward the replication fork.
The enzyme responsible for extending the new DNA strand by adding nucleotides is DNA polymerase. It reads the template strand and adds complementary nucleotides to form a new DNA strand. DNA polymerase can only add nucleotides in the 5' to 3' direction.
transcription:"the first step in protein synthesis, a sequence of nucleotide bases becomes exposed in an unwound region of a DNA strand. That sequence acts as a template upon which a single strand of RNA - a transcript - is synthesized from free nucleotides."The synthesis of an RNA molecule from the DNA template strand is called transcription.
During DNA replication, the enzyme DNA polymerase adds new nucleotides to the growing DNA strand in a specific direction, from the 5' end to the 3' end. This is because DNA polymerase can only add nucleotides to the 3' end of the existing strand, resulting in the new strand being synthesized in the 5' to 3' direction.
During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
The key difference between 5' and 3' DNA strands is the direction in which the nucleotides are arranged. In a 5' DNA strand, the nucleotides are arranged from the 5' end to the 3' end, while in a 3' DNA strand, the nucleotides are arranged from the 3' end to the 5' end. This impacts genetic processes because DNA replication and transcription occur in a specific direction, with enzymes moving along the DNA strand in a 5' to 3' direction. The orientation of the DNA strand determines the direction in which these processes can occur, affecting how genetic information is copied and expressed.
During DNA synthesis, nucleotides are added in a specific directionality, moving from the 5' to the 3' end. This means that new nucleotides are added to the growing DNA strand in a continuous manner, with the 5' end of the new nucleotide attaching to the 3' end of the existing strand.
During DNA synthesis, new nucleotides are added to the growing DNA strand in the 5' to 3' direction. This means that nucleotides are added to the 3' end of the existing strand, as DNA polymerase can only add nucleotides in this direction. This process ensures that the new DNA strand is synthesized in the correct orientation and maintains the genetic information encoded in the original DNA template.