-0.76
Zn2+ + 2e- <--> Zno -0.7618 V
-1.95V
Zn(s)--- Zn2+(aq)+2e-and Ni2+(aq)+e----Ni(s)
In a galvanic cell involving magnesium (Mg) and zinc (Zn), the cathode is the electrode where reduction occurs. In this case, zinc acts as the cathode because it has a higher reduction potential compared to magnesium. Therefore, zinc ions in solution gain electrons and are reduced to solid zinc at the cathode, while magnesium oxidizes at the anode.
In this case, zinc will undergo oxidation and copper ions will experience reduction. The reduction half-reaction is Cu^2+ (aq) + 2e^- → Cu (s), and the oxidation half-reaction is Zn (s) → Zn^2+ (aq) + 2e^-. Overall, the reaction is Zn (s) + Cu^2+ (aq) → Zn^2+ (aq) + Cu (s).
-0.76
-0.76
-0.76
-0.76
Zn2+ + 2e- <--> Zno -0.7618 V
The reduction potential of Na is -2.71 V and the reduction potential of Zn is -0.76 V. When Na is reduced, it gains electrons, so its reduction potential is written as a positive value (+2.71 V). When Zn is oxidized, it loses electrons, so its oxidation potential is -0.76 V. Therefore, the total reduction potential of the cell is +2.71 V - (-0.76 V) = +3.47 V.
No, tin (Sn) cannot reduce zinc (Zn) with a +2 oxidation number under standard-state conditions. This is because the standard reduction potential of Sn is lower than that of Zn, meaning Sn is not strong enough to reduce Zn in this scenario.
-1.95V
Zinc (Zn) can be oxidized more easily compared to copper (Cu) because zinc has a lower standard reduction potential. This means that zinc is more likely to lose electrons and be oxidized in a redox reaction.
silver reduced , gold oxidized
The reduction half-reaction for this reaction is: Zn^2+ + 2e- -> Zn(s).
Zn^2+ + 2e- ––> Zn(s)