answersLogoWhite

0


Best Answer

2003 Ohms.

R = (R1 x R2)/( R1 + R2)

Where R = 667 and R1 = 1000 then R2 = 2003

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: A certain circuit is composed of 2 parallel resistors The total resistance is 667 ohms One of the resistors is 1 Kilo ohm What is the other resistor?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Total resistance of parallel resistors is always less than the?

The smallest resistor.


How can you connect resistors to produce an equivalent resistance which is the same as the resistance of each individual resistor?

You can connect 4 resistors in series-parallel, i.e. two in series, both in parallel with another two, and the effective resistance would be the same as one resistor. Similarly, you can connect nine resistors in 3x3 series-parallel, or 16 resistors in 4x4 series-parallel, etc. to get the same resistance of one resistor.


What is the effect on the total resistance if increase in resistors in series?

That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.


How does electricity react to resistances in parallel and in series?

Resistances in series act just as if they were one single resistor. The value of the single resistor is the sum of the individual resistors connected in series ... Ra + Rb + Rc etc. When several resistors are in series, the effective total is greater than the biggest one. Resistance in parallel act just as if they were one single resistor. The reciprocal of the value of the single resistor is the sum of the reciprocals of the individual resistors connected in parallel ... Total effective resistance = 1 divided by (1/Ra + 1/Rb + 1/Rc + etc.) When several resistors are in parallel, the effective total is less than the smallest one. Once you figure out the effective value of the series- or parallel-combination of many resistors, you handle them as if they were one single resistor, and you can work with the voltage and current: Current through any resistance = (Voltage across it) divided by (its resistance).


How are parallel resistors connected?

If you need a resistor of a certain value, and you have no resistors with small enough values,you can create the one you need by connecting several of those you have in parallel.The effective net resistance of resistors in parallel is always less than the smallest individual.And the more resistors you add in parallel, the smaller the net effective resistance becomes.

Related questions

How does the effective resistance of four resistors in parallel compared to the individual resistance?

It depends on the values of the individual resistors. But if each resistor is identical, then the total resistance will be one-quarter that of an individual resistor.


When 2 resistors are connected in parallel r1r2 are?

Two resistors connected in parallel are 1/2 the sum of their resistance. The resistance of two resistors connected in series is the sum of their resistance. For example: The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in parallel is 100+200 divided by 2 = 150 ohms. The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in series 100+200= 300 ohms.


Total resistance of parallel resistors is always less than the?

The smallest resistor.


What will happen to the other resistor if the number of resistor decreases?

the voltage across that resistor will increase if it is in series with the other resistors. the current through that resistor will increase if it is in parallel with the other resistors.


How can you connect resistors to produce an equivalent resistance which is the same as the resistance of each individual resistor?

You can connect 4 resistors in series-parallel, i.e. two in series, both in parallel with another two, and the effective resistance would be the same as one resistor. Similarly, you can connect nine resistors in 3x3 series-parallel, or 16 resistors in 4x4 series-parallel, etc. to get the same resistance of one resistor.


A 120 ohm resistor a 60 ohm resistor and a 40 ohm resistor are connected in parallel to a 120 volt power source. What is the effective resistance of the three resistors?

The effective resistance of those three resistors in parallel is 20 ohms. And it makes no difference what the power source is, or whether they're even connected to a power source at all. As soon as those three resistors are in parallel, their effective resistance is 20 ohms immediately, even if they're still in the drawer.


How will you get 3 ohm resistance using 2 ohm resistance?

connect 2 2ohm resistors in parallel and connect it to a series 2ohm resistor


What is the effect on the total resistance if increase in resistors in series?

That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.


How does electricity react to resistances in parallel and in series?

Resistances in series act just as if they were one single resistor. The value of the single resistor is the sum of the individual resistors connected in series ... Ra + Rb + Rc etc. When several resistors are in series, the effective total is greater than the biggest one. Resistance in parallel act just as if they were one single resistor. The reciprocal of the value of the single resistor is the sum of the reciprocals of the individual resistors connected in parallel ... Total effective resistance = 1 divided by (1/Ra + 1/Rb + 1/Rc + etc.) When several resistors are in parallel, the effective total is less than the smallest one. Once you figure out the effective value of the series- or parallel-combination of many resistors, you handle them as if they were one single resistor, and you can work with the voltage and current: Current through any resistance = (Voltage across it) divided by (its resistance).


You are just asking that let us assume you have connected 2 or 3 resistors in a circuit and the current flowing through the circuit and from all the resistors will be same but how?

If the resistors are connected in series, the total resistance will be the sum of the resistances of each resistor, and the current flow will be the same thru all of them. if the resistors are connected in parallel, then the current thru each resistor would depend on the resistance of that resistor, the total resistance would be the inverse of the sum of the inverses of the resistance of each resistor. Total current would depend on the voltage and the total resistance


How are parallel resistors connected?

If you need a resistor of a certain value, and you have no resistors with small enough values,you can create the one you need by connecting several of those you have in parallel.The effective net resistance of resistors in parallel is always less than the smallest individual.And the more resistors you add in parallel, the smaller the net effective resistance becomes.


Resistors A and B are connected in parallel If resistor B has twice the resistance of A what is the current taken by resistor B?

half of the current flowing thru resistor 1.... V=IR.