They are:
- Adenine and thymine
- Cytosine and guanine
The complementary base pairs in DNA are adenine (A) with thymine (T), and cytosine (C) with guanine (G).
Complementary base pairs are nucleotide bases in DNA that always bond together in a specific way: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). An example of complementary base pairs is A-T and C-G.
The correct complementary base pairs in DNA are adenine (A) with thymine (T), and cytosine (C) with guanine (G).
CCGTAGGCC is a sequence of DNA base pairs. It represents the complementary DNA strand to the original sequence GGCTACGG, where each base pairs with its complementary base (A with T and C with G).
Complementary base pairing is the characteristic of nucleic acids where adenine pairs with thymine (or uracil in RNA) and cytosine pairs with guanine. This pairing allows the two strands of DNA or RNA to form a stable double helix structure.
The base sequence complementary to CGAC in a DNA molecule is GCTG. In DNA, cytosine (C) pairs with guanine (G), and adenine (A) pairs with thymine (T), so you would replace each base with its complementary counterpart. Therefore, C pairs with G, G pairs with C, A pairs with T, and C pairs with G.
The base sequence on the complementary DNA strand will be GCATCC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, for each base in the original sequence CGTAGG, the complementary bases are as follows: C pairs with G, G pairs with C, T pairs with A, A pairs with T, G pairs with C, and G pairs with C again.
Adrenine (A) pairs with Thymine (T) Cytosine (C) pairs with Guanine (G)
The complementary DNA base sequence for AACT is TTGA. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original sequence is replaced by its complementary base.
Base pairing rules dictate that in DNA, adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G). These pairs are called complementary base pairs because they always bond together due to their specific chemical structures and hydrogen bonding capabilities. Together, these rules ensure the accurate replication and transcription of DNA.
Complementary
The base cytosine pairs with guanine via three hydrogen bonds. They are complementary base pairs in the DNA double helix.