 Previous Article
 JIMO Home
 This Issue

Next Article
Convergence analysis of Euler discretization of controlstate constrained optimal control problems with controls of bounded variation
Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions
1.  Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845 
2.  Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia 3010, Australia 
References:
[1] 
R. Arévalo, I. Zuriguel and D. Maza, Topology of the force network in the jamming transition of an isotropically compressed granular packing, Physical Review E, 81 (2010), 041302. Google Scholar 
[2] 
D. P. Bertsekas, "Network Optimization: Continuous and Discrete Models (Optimization, Computation, and Control)," Athena Scientific, 1998. Google Scholar 
[3] 
J. A. Bondy and U. S. R. Murty, "Graph Theory," Graduate Texts in Mathematics, 244. Springer, New York, 2008. doi: 10.1007/9781846289705. Google Scholar 
[4] 
I. Cavarretta and C. O'Sullivan, The mechanics of rigid irregular particles subject to uniaxial compression, Géotechnique, 62 (2012), 681692. Google Scholar 
[5] 
J. Duran, "Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials," SpringerVerlag, New York, 2000. Google Scholar 
[6] 
J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problem, Journal of the Association for Computing Machinery, 19 (1972), 248264. Google Scholar 
[7] 
A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to graph drawing, Graph Drawing, 1190 (1997), 201216. Google Scholar 
[8] 
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247270. doi: 10.3934/jimo.2008.4.247. Google Scholar 
[9] 
F. S. Hillier and G. J. Lieberman, "Introduction to Operations Research," McGrawHill, 2005. Google Scholar 
[10] 
D. Jungnickel, "Graphs, Networks and Algorithms," Third edition. Algorithms and Computation in Mathematics, 5. Springer, Berlin, 2008. doi: 10.1007/9783540727804. Google Scholar 
[11] 
Q. Lin and A. Tordesillas, Granular rheology: Fine tuned for optimal efficiency? Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, (2012). Google Scholar 
[12] 
R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica J. IFAC, 45 (2009), 22502257. doi: 10.1016/j.automatica.2009.05.029. Google Scholar 
[13] 
H. B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials, Géotechnique, 37 (1987), 271283. Google Scholar 
[14] 
M. Oda and H. Kazama, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Géotechnique, 48 (1998), 465481. Google Scholar 
[15] 
M. Oda, J. Konishi and S. NematNasser, Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling, Mechanics of Materials, 1 (1982), 269283. Google Scholar 
[16] 
A. Ord and B. E. Hobbs, Fracture pattern formation in frictional, cohesive, granular material, Philosophical Transactions of the Royal Society A, 368 (2010), 95118. Google Scholar 
[17] 
J. Paavilainen and J. Tuhkuri, Pressure distributions and force chains during simulated ice rubbling against sloped structures, Cold Regions Science and Technology, 85 (2013), 157174. Google Scholar 
[18] 
J. M. Padbidri, C. M. Hansen, S. D. Mesarovic and B. Muhunthan, Length scale for transmission of rotations in dense granular materials, Journal of Applied Mechanics, 79 (2012), 031011. Google Scholar 
[19] 
F. Radjai, D. E. Wolf, M. Jean and J. J. Moreau, Bimodal character of stress transmission in granular packings, Physical Review Letters, 80 (1998), 6164. Google Scholar 
[20] 
A. L. Rechenmacher, S. Abedi, O. Chupin and A. D. Orlando, Characterization of mesoscale instabilities in localized granular shear using digital image correlation, Acta Geotechnica, 6 (2011), 205217. Google Scholar 
[21] 
A. Tordesillas, Force chain buckling, unjamming transitions and shear banding in dense granular assemblies, Philosophical Magazine, 87 (2007), 49875016. Google Scholar 
[22] 
A. Tordesillas, A. Cramer and D. M. Walker, Minimum cut and shear bands, Powders & Grains AIP Conference Proceedings 1542 (2013), 507510. Google Scholar 
[23] 
A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer and J. Shi, Structural stability and jamming of selforganized cluster conformations in dense granular materials, Journal of the Mechanics and Physics of Solids, 59 (2011), 265296. Google Scholar 
[24] 
A. Tordesillas, D. M. Walker, E. Andò and G. Viggiani, Revisiting localised deformation in sand with complex systems, Proceedings of the Royal Society of London Series A, (2013). Google Scholar 
[25] 
A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang and R. P. Behringer, Transition dynamics and magicnumberlike behavior of frictional granular clusters, Physical Review E, 86 (2012), 011306. Google Scholar 
[26] 
A. Tordesillas, D. M. Walker and Q. Lin, Force cycles and force chains, Physical Review E, 81 (2010), 011302. Google Scholar 
[27] 
D. M. Walker, A. Tordesillas, S. Pucilowski, Q. Lin, A. L. Rechenmacher and S. Abedi, Analysis of grainscale measurements of sand using kinematical complex networks, International Journal of Bifurcation and Chaos, 22 (2012), 1230042. doi: 10.1142/S021812741230042X. Google Scholar 
[28] 
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705718. doi: 10.3934/jimo.2009.5.705. Google Scholar 
[29] 
Y. Zhao and M. A. Stadtherr, Rigorous global optimization for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 1267812693. Google Scholar 
show all references
References:
[1] 
R. Arévalo, I. Zuriguel and D. Maza, Topology of the force network in the jamming transition of an isotropically compressed granular packing, Physical Review E, 81 (2010), 041302. Google Scholar 
[2] 
D. P. Bertsekas, "Network Optimization: Continuous and Discrete Models (Optimization, Computation, and Control)," Athena Scientific, 1998. Google Scholar 
[3] 
J. A. Bondy and U. S. R. Murty, "Graph Theory," Graduate Texts in Mathematics, 244. Springer, New York, 2008. doi: 10.1007/9781846289705. Google Scholar 
[4] 
I. Cavarretta and C. O'Sullivan, The mechanics of rigid irregular particles subject to uniaxial compression, Géotechnique, 62 (2012), 681692. Google Scholar 
[5] 
J. Duran, "Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials," SpringerVerlag, New York, 2000. Google Scholar 
[6] 
J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problem, Journal of the Association for Computing Machinery, 19 (1972), 248264. Google Scholar 
[7] 
A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to graph drawing, Graph Drawing, 1190 (1997), 201216. Google Scholar 
[8] 
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247270. doi: 10.3934/jimo.2008.4.247. Google Scholar 
[9] 
F. S. Hillier and G. J. Lieberman, "Introduction to Operations Research," McGrawHill, 2005. Google Scholar 
[10] 
D. Jungnickel, "Graphs, Networks and Algorithms," Third edition. Algorithms and Computation in Mathematics, 5. Springer, Berlin, 2008. doi: 10.1007/9783540727804. Google Scholar 
[11] 
Q. Lin and A. Tordesillas, Granular rheology: Fine tuned for optimal efficiency? Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, (2012). Google Scholar 
[12] 
R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica J. IFAC, 45 (2009), 22502257. doi: 10.1016/j.automatica.2009.05.029. Google Scholar 
[13] 
H. B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials, Géotechnique, 37 (1987), 271283. Google Scholar 
[14] 
M. Oda and H. Kazama, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Géotechnique, 48 (1998), 465481. Google Scholar 
[15] 
M. Oda, J. Konishi and S. NematNasser, Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling, Mechanics of Materials, 1 (1982), 269283. Google Scholar 
[16] 
A. Ord and B. E. Hobbs, Fracture pattern formation in frictional, cohesive, granular material, Philosophical Transactions of the Royal Society A, 368 (2010), 95118. Google Scholar 
[17] 
J. Paavilainen and J. Tuhkuri, Pressure distributions and force chains during simulated ice rubbling against sloped structures, Cold Regions Science and Technology, 85 (2013), 157174. Google Scholar 
[18] 
J. M. Padbidri, C. M. Hansen, S. D. Mesarovic and B. Muhunthan, Length scale for transmission of rotations in dense granular materials, Journal of Applied Mechanics, 79 (2012), 031011. Google Scholar 
[19] 
F. Radjai, D. E. Wolf, M. Jean and J. J. Moreau, Bimodal character of stress transmission in granular packings, Physical Review Letters, 80 (1998), 6164. Google Scholar 
[20] 
A. L. Rechenmacher, S. Abedi, O. Chupin and A. D. Orlando, Characterization of mesoscale instabilities in localized granular shear using digital image correlation, Acta Geotechnica, 6 (2011), 205217. Google Scholar 
[21] 
A. Tordesillas, Force chain buckling, unjamming transitions and shear banding in dense granular assemblies, Philosophical Magazine, 87 (2007), 49875016. Google Scholar 
[22] 
A. Tordesillas, A. Cramer and D. M. Walker, Minimum cut and shear bands, Powders & Grains AIP Conference Proceedings 1542 (2013), 507510. Google Scholar 
[23] 
A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer and J. Shi, Structural stability and jamming of selforganized cluster conformations in dense granular materials, Journal of the Mechanics and Physics of Solids, 59 (2011), 265296. Google Scholar 
[24] 
A. Tordesillas, D. M. Walker, E. Andò and G. Viggiani, Revisiting localised deformation in sand with complex systems, Proceedings of the Royal Society of London Series A, (2013). Google Scholar 
[25] 
A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang and R. P. Behringer, Transition dynamics and magicnumberlike behavior of frictional granular clusters, Physical Review E, 86 (2012), 011306. Google Scholar 
[26] 
A. Tordesillas, D. M. Walker and Q. Lin, Force cycles and force chains, Physical Review E, 81 (2010), 011302. Google Scholar 
[27] 
D. M. Walker, A. Tordesillas, S. Pucilowski, Q. Lin, A. L. Rechenmacher and S. Abedi, Analysis of grainscale measurements of sand using kinematical complex networks, International Journal of Bifurcation and Chaos, 22 (2012), 1230042. doi: 10.1142/S021812741230042X. Google Scholar 
[28] 
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705718. doi: 10.3934/jimo.2009.5.705. Google Scholar 
[29] 
Y. Zhao and M. A. Stadtherr, Rigorous global optimization for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 1267812693. Google Scholar 
[1] 
ILin Wang, ShiouJie Lin. A network simplex algorithm for solving the minimum distribution cost problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 929950. doi: 10.3934/jimo.2009.5.929 
[2] 
K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks & Heterogeneous Media, 2008, 3 (1) : 125148. doi: 10.3934/nhm.2008.3.125 
[3] 
José Joaquín Bernal, Diana H. BuenoCarreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459474. doi: 10.3934/amc.2016018 
[4] 
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multiobjective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487493. doi: 10.3934/naco.2011.1.487 
[5] 
R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237254. doi: 10.3934/jimo.2006.2.237 
[6] 
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 7586. doi: 10.3934/naco.2020016 
[7] 
Cristian Enache. Maximum and minimum principles for a class of MongeAmpère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 13471359. doi: 10.3934/cpaa.2014.13.1347 
[8] 
David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twinfree graphs. Advances in Mathematics of Communications, 2009, 3 (1) : 97114. doi: 10.3934/amc.2009.3.97 
[9] 
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359366. doi: 10.3934/amc.2017029 
[10] 
Romar dela Cruz, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. On the minimum number of minimal codewords. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020130 
[11] 
Fei Meng, XiaoPing Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159176. doi: 10.3934/krm.2019007 
[12] 
Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks & Heterogeneous Media, 2008, 3 (3) : 437460. doi: 10.3934/nhm.2008.3.437 
[13] 
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195207. doi: 10.3934/amc.2016.10.195 
[14] 
Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 5182. doi: 10.3934/mcrf.2013.3.51 
[15] 
Haolei Wang, Lei Zhang. Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. Electronic Research Archive, 2020, 28 (1) : 405421. doi: 10.3934/era.2020023 
[16] 
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597615. doi: 10.3934/dcds.2006.14.597 
[17] 
Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 241262. doi: 10.3934/naco.2016010 
[18] 
Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720729. doi: 10.3934/proc.2005.2005.720 
[19] 
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 18. doi: 10.3934/amc.2020038 
[20] 
Monica Motta. Minimum time problem with impulsive and ordinary controls. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 57815809. doi: 10.3934/dcds.2018252 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]