AGCCT and in RNA sequencing it would be UGCCT
The complementary strand of DNA to cgtta would be gcaat. This is because in DNA, cytosine pairs with guanine and thymine pairs with adenine.
The complementary strand of DNA to the template strand TACGGCTA would be ATGCCGAT.
Ttg ga
The template strand of DNA is used to make a complementary copy during DNA replication, while the antisense (non-coding) strand is used as a template for complementary mRNA synthesis during transcription.
The complementary DNA strand would be AGC CTG GTA GCT. In DNA, adenine pairs with thymine and cytosine pairs with guanine. Therefore, the complementary strand is formed by replacing each base with its complementary base.
The complementary strand of DNA to cgtta would be gcaat. This is because in DNA, cytosine pairs with guanine and thymine pairs with adenine.
To determine the complementary DNA strand produced from a given DNA strand, you pair the nucleotides according to base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the DNA strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'. Thus, the complementary DNA sequence is synthesized in the opposite direction.
The DNA strand produced from the template sequence "tac gg" would be complementary to it. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, the complementary DNA strand would be "atg cc."
The complementary DNA strand produced from the given DNA strand TCG AAG would be AGC TTC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base on the original strand is matched with its complementary base to form the new strand.
The complementary DNA strand produced from the given DNA sequence "CGT ATA" would be "GCA TAT." In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original strand is replaced by its complementary base in the new strand.
To determine the complementary DNA strand, you would pair each base of the original DNA strand with its corresponding complementary base: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the original strand is ATCG, the complementary strand would be TAGC. This base-pairing rule ensures that the two strands of DNA are complementary, allowing for proper replication and function.
The complementary DNA strand produced from the given DNA sequence ATG CGA would be TAC GCT. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original strand is matched with its complementary base to form the new strand.
The complementary DNA strand produced from the sequence "cgt ata" would be "gca tat." In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original strand is matched with its complementary base to form the new strand.
To determine the complementary DNA strand produced from a given DNA sequence, you need to match each nucleotide with its complementary base: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the original DNA strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'. The directionality of the strands is also important, so ensure to maintain the 5' to 3' orientation when writing the complementary sequence.
To provide the complementary strand of DNA, I would need to see the specific sequence of the given DNA strand. DNA strands are complementary based on base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). If you provide the sequence, I can generate the corresponding complementary strand for you.
CAT GT. -APEX Learning
The base sequence produced from the DNA strand TAGGTAACT would be its complementary strand. In DNA, adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C). Therefore, the complementary sequence would be ATCCATTGA.