t a a c g g t c g
The complementary DNA strand is CGTTTGATGG. A pairs with T, and G pairs with C.
The "c" in cDNA stands for complementary. cDNA is synthesized from mRNA using reverse transcriptase, resulting in a complementary DNA strand that lacks introns and represents the protein-coding regions of a gene.
The sequence of nucleotides of the complementary strand will be the nucleotides which bind to the nucleotides of the template. In DNA, adenine binds to thymine and cytosine binds to guanine. The complementary strand will therefore have an adenine where the template strand has a thymine, a guanine where the template has a cytosine, etc. For example: If the template strand is ATG-GGC-CTA-GCT Then the complementary strand would be TAC-CCG-GAT-CGA
The complement strand of CCTAGCT would be GGATCGA.
DNA:T-C-G-A-TmRNA:U-C-G-A-UmRNA rule: switch T with U_________________________________________Although the above answer is correct in that there are no thymines (T) in RNA, I must disagree with the rest of the answer. The mRNA strand given in the answer above would be the identical strand made from RNA, not the complementary strand as the question asked for.A complementary strand is produced by an RNA or DNA polymerase from a template DNA strand.Therefore, if the template DNA strand were T-C-G-A-T, then:The complementary DNA strand would be A-G-C-T-AThe complementary RNA strand would be A-G-C-U-A
In DNA, the complementary strand would be: GGATCAGTAC.
The complementary DNA strand is CGTTTGATGG. A pairs with T, and G pairs with C.
The "c" in cDNA stands for complementary. cDNA is synthesized from mRNA using reverse transcriptase, resulting in a complementary DNA strand that lacks introns and represents the protein-coding regions of a gene.
The DNA base pairing rules are A-T and C-G, so the complementary strand to TAGTCA is ATCAGT.
The complementary strand of DNA is a strand that matches the sequence of the original DNA strand through base pairing rules. Adenine pairs with thymine (A-T) and cytosine pairs with guanine (C-G). This results in two DNA strands with complementary sequences that can be used for replication and transcription.
GGATCGA. Each base in the original DNA strand pairs with its complementary base (A with T and C with G) in the new strand during DNA replication.
C binds with G, A binds with T. Therefore the complementary strand of CCATCG IS GGTAGC.
The complementary section on the other strand would be GATCTTG. This is because in DNA, adenine pairs with thymine and cytosine pairs with guanine, so the complementary bases are G-C, A-T, T-A, and C-G.
The sequence of nucleotides of the complementary strand will be the nucleotides which bind to the nucleotides of the template. In DNA, adenine binds to thymine and cytosine binds to guanine. The complementary strand will therefore have an adenine where the template strand has a thymine, a guanine where the template has a cytosine, etc. For example: If the template strand is ATG-GGC-CTA-GCT Then the complementary strand would be TAC-CCG-GAT-CGA
The complement strand of CCTAGCT would be GGATCGA.
DNA:T-C-G-A-TmRNA:U-C-G-A-UmRNA rule: switch T with U_________________________________________Although the above answer is correct in that there are no thymines (T) in RNA, I must disagree with the rest of the answer. The mRNA strand given in the answer above would be the identical strand made from RNA, not the complementary strand as the question asked for.A complementary strand is produced by an RNA or DNA polymerase from a template DNA strand.Therefore, if the template DNA strand were T-C-G-A-T, then:The complementary DNA strand would be A-G-C-T-AThe complementary RNA strand would be A-G-C-U-A
The complementary strand of DNA for the sequence AGTT would be TCAA. In DNA, adenine pairs with thymine and guanine pairs with cytosine. So the complementary base for A is T, G is C, T is A, and T is A.