Telomerase
Two major enzymes used during DNA replication are DNA polymerase, which synthesizes new DNA strands by adding nucleotides in a complementary manner, and DNA helicase, which unwinds the DNA double helix to expose the template strands for replication.
The four enzymes involved in DNA replication and repair are DNA polymerase, DNA helicase, DNA ligase, and DNA primase. DNA polymerase synthesizes new DNA strands, DNA helicase unwinds the double helix, DNA ligase joins the Okazaki fragments on the lagging strand, and DNA primase synthesizes RNA primers for DNA polymerase to begin replication.
DNA Polymerase III is responsible for adding new nucleotides to the strand being synthesised. Also involved in DNA replication are DNA Polymerase I which replaces primers with nucleotides, and DNA Ligase which joins fragments of DNA together.
DNA Helicase - responsible for separating the two stands DNA Polymerase - responsible for catalyzing the addition of bases to the new strand DNA Ligase - responsible for sealing fragments
The fragments making up the noncontinuous strand in DNA replication are called Okazaki fragments. These are short DNA fragments that are synthesized discontinuously on the lagging strand during DNA replication.
Two major enzymes used during DNA replication are DNA polymerase, which synthesizes new DNA strands by adding nucleotides in a complementary manner, and DNA helicase, which unwinds the DNA double helix to expose the template strands for replication.
The four enzymes involved in DNA replication and repair are DNA polymerase, DNA helicase, DNA ligase, and DNA primase. DNA polymerase synthesizes new DNA strands, DNA helicase unwinds the double helix, DNA ligase joins the Okazaki fragments on the lagging strand, and DNA primase synthesizes RNA primers for DNA polymerase to begin replication.
DNA Polymerase III is responsible for adding new nucleotides to the strand being synthesised. Also involved in DNA replication are DNA Polymerase I which replaces primers with nucleotides, and DNA Ligase which joins fragments of DNA together.
Primase in the DNA-dependent RNA polymerase enzyme that functions in DNA replication by synthesizing the RNA primers which are then extended by DNA polymerase to yield newly synthesized DNA fragments. While being an RNA polymerase, primase is different from the RNA polymerase that functions in the transcription of DNA.
DNA Helicase - responsible for separating the two stands DNA Polymerase - responsible for catalyzing the addition of bases to the new strand DNA Ligase - responsible for sealing fragments
DNA Polymerase III is responsible for adding new nucleotides to the strand being created. DNA Polymerase I replaces the primers with DNA nucleotides. The fragments are then joined together by ligase, and a new strand has been created.
Helicase is the enzymes that splits the double helix into two separate strands, and DNA Polymerase (as opposed to RNA Polymerase) joins the nucleotides together in the new strands being created.
Polymerise dna fragments
The fragments making up the noncontinuous strand in DNA replication are called Okazaki fragments. These are short DNA fragments that are synthesized discontinuously on the lagging strand during DNA replication.
DNA ligase. Apex
During DNA replication, the lagging strand is replicated ~1000 (E. coli) base pairs at a time, forming numerous "Okazaki fragments".Okazaki fragments form because polymerase is only able to replicate DNA in one direction, but DNA is double stranded, with the strands running anti parallel (in opposite directions). The polymerase waits for a region of DNA to be unwound, and while the leading strand is replicated continuously, on the lagging strand the polymerase waits until a region of single stranded DNA is produced before replicating it. This discontinous replication forms the Okazaki fragments, which can then be joined together by ligase (although a different polymerase enzyme, pol I in E. coli, is needed as well to replace the RNA primers with DNA).
During DNA replication Okazaki fragments are joined together by DNA polymerase. Remember that Okazaki fragments start with an RNA primer so RNAse H is need to remove the primer follwed by DNA plymerase to add nucleotides and finally DNA ligase to seal the single strand nick.