Alice Chien, et al. were the first to describe the Taqpolymerase in 1976.
Then, Saiki et al. were the first to employ the polymerase in a published study.
Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 1976;127:1550-1557.
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988;239:487-491.
Tag polymerase, also known as Taq polymerase, was discovered in 1976 by researchers at Cetus Corporation. Taq polymerase is a heat-resistant enzyme that is commonly used in polymerase chain reaction (PCR) due to its ability to withstand high temperatures required for DNA amplification. This discovery revolutionized molecular biology research by enabling the automation and rapid amplification of DNA sequences.
The Taq name is a shortened for Thermophilus aquaticus, a thermophilic bacteria that is the source of the particular DNA polymerase enzyme. The enzyme heat resistant property is desired because it could withstand the high temperature during the PCR process. -Kaitlin The Taq name is a shortened for Thermophilus aquaticus, a thermophilic bacteria that is the source of the particular DNA polymerase enzyme. The enzyme heat resistant property is desired because it could withstand the high temperature during the PCR process. -Kaitlin
Taq polymerase is beneficial in PCR because it is heat-resistant, allowing for the high temperatures needed to separate DNA strands. This enzyme also has a high replication rate, leading to faster PCR cycles. Additionally, Taq polymerase is cost-effective and widely available, making it a popular choice for PCR experiments.
The enzyme used in PCR to synthesize DNA is called DNA polymerase. The key difference is that the DNA polymerase used in PCR, such as Taq polymerase, is derived from a thermophilic bacterium called Thermus aquaticus and can withstand the high temperatures used in the PCR cycling process. This distinguishes it from the equivalent enzyme in our cells or most bacteria, which would be denatured by the high temperatures of PCR.
Taq Polymerase is an important enzyme component involved in the PCR reaction. Its A DNA polymerase and its role is to elongate the growing strands of DNA during the extension process. Since the Extension process in a PCR works at a temperature which a human DNA polymerase cannot remain active, the Taq polymerase obtained from Thermus aquaticus (living in the hot springs) are used and hence these enzymes are thermo stable.
Tag polymerase, also known as Taq polymerase, was discovered in 1976 by researchers at Cetus Corporation. Taq polymerase is a heat-resistant enzyme that is commonly used in polymerase chain reaction (PCR) due to its ability to withstand high temperatures required for DNA amplification. This discovery revolutionized molecular biology research by enabling the automation and rapid amplification of DNA sequences.
The Taq name is a shortened for Thermophilus aquaticus, a thermophilic bacteria that is the source of the particular DNA polymerase enzyme. The enzyme heat resistant property is desired because it could withstand the high temperature during the PCR process. -Kaitlin The Taq name is a shortened for Thermophilus aquaticus, a thermophilic bacteria that is the source of the particular DNA polymerase enzyme. The enzyme heat resistant property is desired because it could withstand the high temperature during the PCR process. -Kaitlin
Taq polymerase is beneficial in PCR because it is heat-resistant, allowing for the high temperatures needed to separate DNA strands. This enzyme also has a high replication rate, leading to faster PCR cycles. Additionally, Taq polymerase is cost-effective and widely available, making it a popular choice for PCR experiments.
The enzyme used in PCR to synthesize DNA is called DNA polymerase. The key difference is that the DNA polymerase used in PCR, such as Taq polymerase, is derived from a thermophilic bacterium called Thermus aquaticus and can withstand the high temperatures used in the PCR cycling process. This distinguishes it from the equivalent enzyme in our cells or most bacteria, which would be denatured by the high temperatures of PCR.
Taq Polymerase is an important enzyme component involved in the PCR reaction. Its A DNA polymerase and its role is to elongate the growing strands of DNA during the extension process. Since the Extension process in a PCR works at a temperature which a human DNA polymerase cannot remain active, the Taq polymerase obtained from Thermus aquaticus (living in the hot springs) are used and hence these enzymes are thermo stable.
The polymerase used in polymerase chain reaction (PCR) is typically derived from a thermophilic bacterium called Thermus aquaticus. The specific polymerase most commonly used is Taq polymerase, which is known for its ability to withstand high temperatures required for PCR.
Storing Taq polymerase at a very low temperature (typically -20°C) helps preserve its activity over time. While Taq polymerase is thermostable and can withstand high temperatures during PCR, storing it at low temperatures helps prevent degradation and denaturation of the enzyme, leading to better performance in PCR reactions.
taq polymerase is special because it is very stable at high temperatures and will not denature even at the 90 degree step of pcr. taq polymerase is so heat stable because it was extracted from the bacterium thermus aquaticus, which is found in hot springs and geezers
Thermus aquaticus = =
To dilute Taq polymerase from 500 units/ml to a desired concentration, calculate the volume of the enzyme needed to achieve the desired units. For example, if you need 100 units, you would dilute 0.2 ml of the 500 units/ml solution in a total volume to reach your desired concentration.
Taq DNA polymerase is used in PCR because it is heat-resistant and can withstand the high temperatures needed for the PCR process. This allows for the enzyme to remain active during the repeated heating and cooling cycles, making it ideal for amplifying DNA.
Taq polymerase is special and essential in PCR because it can withstand high temperatures needed to separate DNA strands during the reaction. This heat-resistant enzyme allows for the repeated cycles of heating and cooling required for DNA amplification, making PCR possible.