2.3 grams P (1mole P/30.97 grams)
= 0.07427 moles Phosphorous
0.07427 moles P * 6.022 X 10^23
= 4.5 X 10^22 atoms of P in 2.3 grams P
4.5 X 10^22/6.022 X10^23
= 0.07427 moles of atoms in 2.3 grams of phosphorous
To find the number of moles of phosphorus atoms in 100 grams of P4S10, we first need to determine the molar mass of P4S10 which is 284.26 g/mol. Next, we calculate the number of moles of P4S10 in 100 grams by dividing 100 g by the molar mass to get 0.352 moles of P4S10. Since there are 4 phosphorus atoms in each P4S10 molecule, there are 0.352 moles x 4 = 1.41 moles of phosphorus atoms in 100 grams of P4S10.
mole = mass/molar mass mass=2.3 grams molar mass=30.97 2.3/30.97=0.0742 moles
Avogadros number (approximately). The atomic weight of iron is 55.845. Avogadros number , the number of atoms in a mole of an element, or the number of molecules in a mole of a compound is 6.023 X 1023
The number of moles of phosphorus depends on the given quantity or mass of phosphorus. To calculate the number of moles, you need to know the molar mass of phosphorus (about 30.97 g/mol) and the mass of the sample. You can then use the formula moles = mass/molar mass to find the number of moles.
To convert atoms to moles, you divide by Avogadro's number, which is approximately 6.022 x 10^23. Therefore, 1.20x10^25 atoms of phosphorus is equal to 20 moles of phosphorus.
To find the number of moles of phosphorus atoms in 100 grams of P4S10, we first need to determine the molar mass of P4S10 which is 284.26 g/mol. Next, we calculate the number of moles of P4S10 in 100 grams by dividing 100 g by the molar mass to get 0.352 moles of P4S10. Since there are 4 phosphorus atoms in each P4S10 molecule, there are 0.352 moles x 4 = 1.41 moles of phosphorus atoms in 100 grams of P4S10.
mole = mass/molar mass mass=2.3 grams molar mass=30.97 2.3/30.97=0.0742 moles
Quite a few! 392 grams phosphorous (1 mole P/30.97 grams) = 12.7 moles phosphorous ===================
divide the number of atoms by avogadros number (6.022*10^23), the resulting number is the number of moles you have. Multiply the number of moles of atoms by the molar mass (found on any periodic table) and the answer is how many grams of the substance you have.
3,42 moles of phosphorus trichloride have 469,6686 g.
Avogadros number (approximately). The atomic weight of iron is 55.845. Avogadros number , the number of atoms in a mole of an element, or the number of molecules in a mole of a compound is 6.023 X 1023
To convert grams to moles, you divide the given mass in grams by the molar mass of the substance in grams per mole, which is obtained from the periodic table. This calculation gives you the number of moles present. Avogadro's number (6.022 x 10^23) is used to convert moles to individual particles or entities like atoms or molecules.
n=m/M so, the atomic number for Phosphorus is 30.973... we divide the atomic number by the amount of grams we have so n= 2.3/ 30.973= 0.07425822490556 = 0.14 mol.
4,70 moles of tetraphosphorus decaoxide contain 582,56 g phosphorus.
The number of moles of phosphorus depends on the given quantity or mass of phosphorus. To calculate the number of moles, you need to know the molar mass of phosphorus (about 30.97 g/mol) and the mass of the sample. You can then use the formula moles = mass/molar mass to find the number of moles.
To determine the number of phosphorus atoms in 30.973 grams, you would first convert the mass to moles using the molar mass of phosphorus (30.973 g/mol). Then, you would use Avogadro's number (6.022 x 10^23 atoms/mol) to find the number of phosphorus atoms, which would be 30.973 grams / 30.973 g/mol * 6.022 x 10^23 atoms/mol.
6.02*10^23atoms (avogadros constant)