remember that mass divided by molecular mass = the number of moles
the Atomic Mass' are as follows : C = 112.01
O = 16
H = 1.01
the molecular mass of a methanol molecule is that of 2 carbons 6 hydrogens and one oxygen = 46.08g
following you divide 25g(measure of mass) by 46.08(atomic mass) = 10.54 mole.
(the grams will cancel with each other leaving mole as the unit if you want to take a strictly mathmathical point of view)
For this you need the atomic (molecular) mass of C2H5OH. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. C2H5OH= 46.1 grams1.271 grams C2H5OH / (46.1 grams) = .0276 moles C2H5OH
The mass of 2 moles of ethyl alcohol would be 92,14 grams.
To find the number of moles in 508g of ethanol (C2H5OH), first calculate the molar mass of ethanol: 2(12.01) + 6(1.01) + 1(16.00) = 46.08 g/mol. Next, divide the given mass by the molar mass to find the number of moles: 508g / 46.08 g/mol ≈ 11 moles.
Because the formula shows that each molecule of ethanol contains 2 atoms of carbon, 6* atoms of hydrogen, and 1 atom of oxygen, the gram molecular mass of one mole of ethanol is the sum of twice the gram atomic mass of carbon, 6 times the gram atomic mass of hydrogen, and the atomic mass of oxygen: 46.07. Therefore, 39.2 grams of ethanol constitutes 39.2/46.07 or 0.851 mole, to the justified number of significant digits. ________________ The subscript 5 immediately after the first appearance of the atomic symbol for hydrogen in the formula, plus the implied subscript 1 of the second appearance of the atomic symbol for hydrogen in the formula.
To find the mole fraction of ethanol, you first calculate the total moles of the solution, which is 3.00 + 5.00 = 8.00 moles. Then, you divide the moles of ethanol by the total moles of the solution: 3.00 moles / 8.00 moles = 0.375. So, the mole fraction of ethanol in the solution is 0.375.
For this you need the atomic (molecular) mass of C2H5OH. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. C2H5OH= 46.1 grams1.271 grams C2H5OH / (46.1 grams) = .0276 moles C2H5OH
To calculate the mass of 0.5623 moles of ethanol (C2H5OH), you need to use the molecular weight of ethanol, which is approximately 46.07 g/mol. Multiply the number of moles by the molecular weight to get the mass: 0.5623 moles x 46.07 g/mol ≈ 25.89 grams. Therefore, the mass of 0.5623 moles of ethanol is approximately 25.89 grams.
To find the number of moles of ethanol (C2H5OH) in 16.0 g, first calculate its molar mass. The molar mass of C2H5OH is approximately 46.07 g/mol. Using the formula: moles = mass (g) / molar mass (g/mol), we have moles = 16.0 g / 46.07 g/mol, which equals approximately 0.347 moles of ethanol.
To determine the number of moles, use the formula: moles = mass / molar mass. The molar mass of C2H5OH (ethanol) is approximately 46.07 g/mol. Therefore, 11.5g of C2H5OH represents approximately 0.25 moles.
The balanced chemical equation for the reaction of ethanol with oxygen to form carbon dioxide and water is C2H5OH + 3O2 -> 2CO2 + 3H2O. From this equation, we can see that 3 moles of oxygen are needed to react with 1 mole of ethanol. Therefore, 2 moles of ethanol will require 6 moles of oxygen to react. To find the grams of oxygen, you can multiply the moles of oxygen by its molar mass (32 g/mol).
To find the mole fraction of ethanol (C2H5OH), you first need to calculate the moles of ethanol in the solution. Then, calculate the total moles of all components in the solution. Finally, divide the moles of ethanol by the total moles to get the mole fraction. In this case, since the solution is 50% ethanol by mass, you can assume 50 g of the solution to make calculations simpler.
The mass of 2 moles of ethyl alcohol would be 92,14 grams.
The mole fraction and molality of ethanol -C2H5OH in an aqueous solution that is 45.0 percent ethanol by volume and the density of water is 1.00g per mL that of ethanol is 0.789 grams per mL and 70/18. A mole fraction in chemistry is the amount that is divided by the total amount of all constituents.
To calculate the number of grams of C6H12O6 needed to form 7.50g of C2H5OH, you need to consider the stoichiometry of the reaction between these two compounds. The balanced equation for the conversion of C6H12O6 to C2H5OH is C6H12O6 -> 2 C2H5OH. This means that for every mole of C6H12O6, you get 2 moles of C2H5OH. You can then use the molar mass of each compound to convert grams to moles, and then determine the grams of C6H12O6 needed to form 7.50g of C2H5OH.
To find the number of moles in 508g of ethanol (C2H5OH), first calculate the molar mass of ethanol: 2(12.01) + 6(1.01) + 1(16.00) = 46.08 g/mol. Next, divide the given mass by the molar mass to find the number of moles: 508g / 46.08 g/mol ≈ 11 moles.
1.5 - your welcome
92