Power dissipated by the resistor = I^2 * R or V^2 / R, where R = its resistance value, I = the current in the resistor, and V = the voltage drop across the two terminals of the resistor. You need to measure or find the information of either I (using an ammeter) or V (a voltmeter).
No, because the power dissipated in a resistor is proportional to the square of the current through the resistor but only directly proportional to the resistance of the resistor (I^2 * R) and the current through the lower value resistor will be higher than the current through the higher value resistor, the lower value resistor will usually dissipate more power.
P = I^2 x R] P = 0.2^2 x 100 P = 4 W
In order to determine this, it will be necessary to find which resistor 'maxes out' at the lowest voltage. This can be found using the equation Vi=sqrt (Pi*Ri) for each resistor, where Pi is the power rating of resistor i and Ri is the value of resistor i. Once this is found, the power dissipation of each other resistor can be found using the equation Pi=(Vl^2)/Ri, where Vl is the voltage that maxes out the resistor which maxes out at the lowest voltage, and Ri is the resistance of each resistor. The equivalent power rating would then be the sum of the power dissipated across each resistor.
The power dissipated by a circuit with a voltage of 12V and a current of 3A is 36W. Watts is Volts times Amps.
Power dissipated is always Volts times Amps. W= V*I because of ohm's law, V=I*R, you can substitute either the voltage or amperage with the other value; W= V^2/R or W= I^2*R.
The power dissipated by a resistor can be calculated using the formula ( P = \frac{V^2}{R} ), where ( P ) is the power, ( V ) is the voltage drop across the resistor, and ( R ) is the resistance. For a 1.2 kilohm resistor (or 1200 ohms), the power dissipated would be ( P = \frac{W^2}{1200} ) watts. Thus, the power dissipated depends on the square of the voltage drop across the resistor divided by 1200.
Increase the voltage across the resistor by 41.4% .
No, because the power dissipated in a resistor is proportional to the square of the current through the resistor but only directly proportional to the resistance of the resistor (I^2 * R) and the current through the lower value resistor will be higher than the current through the higher value resistor, the lower value resistor will usually dissipate more power.
True. When two resistors of equal value are connected in parallel, the total power dissipated by the circuit is indeed the sum of the power dissipated by each resistor. Since they have the same resistance and are subjected to the same voltage, each resistor will dissipate the same amount of power, and their combined power will equal twice that of one resistor.
The power dissipated by a resistor is given by the formula ( P = \frac{V^2}{R} ), where ( V ) is the voltage across the resistor and ( R ) is its resistance. If the voltage increases by a factor of 10, the new power can be expressed as ( P' = \frac{(10V)^2}{R} = \frac{100V^2}{R} = 100P ). Therefore, the power dissipated by the resistor increases by a factor of 100.
real power (as opposed to imaginary power, which is not dissipated)
The formula for calculating the power dissipated in a resistor, known as the i2r power, is P I2 R, where P is the power in watts, I is the current in amperes, and R is the resistance in ohms.
.205 watts or 205 mw
I = 2A R = 1000Ω Power Dissipated P = I2R = (2A)2(1000Ω) = 4000W Voltage across resistor V = IR = (2A)(1000Ω) = 2000V
P = I^2 x R] P = 0.2^2 x 100 P = 4 W
Power dissipated = I2R 0.022 x 1000 = 0.4 watts
Like Ohm's Law, the formula for calculating power is a simple product of two quantities. It is given by the formula P = VI, where V is the voltage in volts and I is the current in amperes (or simply amps). So, if you know the value of any two of the quantities, you can easily calculate the third with simple arithmetic. For example, if the current flowing through a resistor is two amps and the voltage drop across that resistor is five volts, the power dissipated by the resistor is, P = VI = 5 volts * 2 amps = 10 watts. If you are given the power and the voltage, you can easily find the current. For example, if you are told that the voltage drop across a resistor is five volts and is dissipating 10 watts, the current through the resistor is 10 watts/5 volts = 2 amps.