A binds with T, C binds with G.
Therefore the complementary DNA sequence will be GTCAATCG.
The complementary RNA would be CAGTTAGC.
The OH means it is the 3' end - so the complementary strand would be 5' at the same spot.
The complementary DNA base sequence for AACT is TTGA. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original sequence is replaced by its complementary base.
ATAGCC is complementary to the base sequence TATCGG.
The complementary base sequence of a DNA strand is formed by pairing adenine (A) with thymine (T) and cytosine (C) with guanine (G). For the template strand TTGCACG, the complementary sequence would be AACGTGC.
To determine the base sequence of the original DNA segment, you would need to know the complementary base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). If you have a sequence of the complementary DNA strand, you can reverse the pairs to identify the original sequence. Without the specific complementary sequence provided, the original DNA segment cannot be determined.
ji
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."
The complementary DNA base sequence for AACT is TTGA. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base in the original sequence is replaced by its complementary base.
ATAGCC is complementary to the base sequence TATCGG.
CCGTAGGCC is a sequence of DNA base pairs. It represents the complementary DNA strand to the original sequence GGCTACGG, where each base pairs with its complementary base (A with T and C with G).
TGCA
The complementary base sequence of a DNA strand is formed by pairing adenine (A) with thymine (T) and cytosine (C) with guanine (G). For the template strand TTGCACG, the complementary sequence would be AACGTGC.
To determine the base sequence of the original DNA segment, you would need to know the complementary base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). If you have a sequence of the complementary DNA strand, you can reverse the pairs to identify the original sequence. Without the specific complementary sequence provided, the original DNA segment cannot be determined.
ji
The base sequence for the complementary DNA would be GCA AT. Since DNA strands are complementary, the bases pair as follows: A with T, T with A, C with G, and G with C.
You can predict the base sequence of one strand of DNA if you know the sequence of the other strand because DNA strands are complementary. Adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). This complementary base pairing allows the sequence of one strand to dictate the sequence of the other, enabling accurate predictions of the base sequence.
TGCA
The complementary DNA sequence of GCTAACTGGC is CGATTGACC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G), so each base in the original sequence is replaced by its complementary base.