16.
Or 16.3158 to be more precise.
Multiply 0.71 times Na's weight (22.98 approximately).
The atomic mass of sodium is approximately 23 grams per mole.
A mole of an element or compound is 6.022 x 1023 (Avogadro's constant) molecules of that substance. This number is the number of molecules it takes for an amount of substance to have a mass in grams the same as its molecular mass: carbon has a molecular mass of 12, so 6.022 x 1023 (one mole) carbon atoms have a mass of 12 grams. The molecular mass of sodium is 23 (22.989) so one mole of sodium has a mass of 23 grams. Sodium chloride has a molecular mass of 58.44 so a mole of NaCl is 58.44 grams. One mole of sodium will make one mole of sodium chloride. Na + Cl => NaCl So four moles of sodium will make four moles of sodium chloride. 4Na + 4Cl => 4NaCl Four moles of NaCl has a mass of 4 x 58.44 = 233.76 grams.
The mass is 1,62.10e-11.
The atomic weight of sodium is 22.98976928 Grams per mole.
The mass is 467,52 g.
To find the number of moles in 120 grams of sodium, divide the given mass by the molar mass of sodium. The molar mass of sodium is approximately 23 grams per mole. Therefore, 120 grams of sodium is equal to 120/23 ≈ 5.22 moles of sodium.
The molar mass of sodium is approximately 23 grams per mole.
To calculate the mass in grams of sodium sulfate, we need to know the number of moles. Once we have the number of moles, we can multiply it by the molar mass to find the mass in grams. For example, if we have 2 moles of sodium sulfate, the mass would be 2 moles * 141.98 grams/mole = 283.96 grams.
To find the mass of fluorine produced, first calculate the mass of sodium fluoride: 27.7 grams of sodium / (1 part sodium / 1 part sodium fluoride) = 27.7 grams of sodium fluoride Now, since the ratio of sodium to fluorine in sodium fluoride is 1:2 (1 part sodium to 2 parts fluorine), the mass of fluorine is 27.7 grams / 2 = 13.85 grams.
The gram atomic mass of sodium is 22.9898, the formula of the least hydrated form of sodium phosphate is Na3PO4.10 H2O, and the gram formula unit mass of this sodium phosphate is 344.09. Therefore, the mass fraction of sodium in this sodium phosphate is 3(22.9898)/344.09 or about 0.20044, and the grams of sodium in 7.2 grams of this sodium phosphate is 1.44 grams of sodium, to the justified number of significant digits.
To find the answer, we multiply the 7 grams of NaCl by the ratio of the molar mass of chlorine over the molar mass of sodium chloride. By doing this, we find that there are about 4.25 grams of chlorine in 7 grams of NaCl.
The mass of the solution would be the sum of the mass of the sodium chloride and the mass of water. So, the mass of the solution would be 17.8 grams (NaCl) + 217 grams (water) = 234.8 grams.
To convert moles to grams, you need to use the molar mass of sodium. The molar mass of sodium is about 23 grams per mole. Therefore, 4.5 moles of sodium would be approximately 103.5 grams (4.5 moles * 23 grams/mole).
To calculate the mass of 4.00 moles of sodium, you can use the molar mass of sodium which is approximately 23 grams/mol. Therefore, 4.00 moles of sodium would have a mass of 4.00 moles * 23 grams/mole = 92 grams.
The molar mass of sodium hydroxide (NaOH) is approximately 40 grams/mol. To find the mass of 25 moles of NaOH, you would multiply the number of moles by the molar mass: 25 mol * 40 g/mol = 1000 grams. So, the mass of 25 moles of sodium hydroxide is 1000 grams.
The molar mass of an element corresponds to the atomic mass of the element (found on the periodic table). The atomic mass of Sodium-Na is 22.990 g, which is also the molar mass of Na. So for 1 mole of Na, there are 22.990 grams of Na. If we had 3 moles of Na, then we would simply multiply the molar mass by 3.
The atomic mass of sodium is approximately 23 grams per mole.