answersLogoWhite

0

When the nucleotide in 3rd position of codon is change it does not change the aminoacid and is called point or silent mutation.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

Which type of mutation would only affect one amino acidwhich type of mutation would only affect one amino acid?

A missense mutation is the type that would only affect one amino acid in a protein sequence. This occurs when a single nucleotide change in the DNA sequence results in the substitution of one amino acid for another in the corresponding protein. This alteration can potentially impact the protein's function, depending on the role of the altered amino acid. Other mutations, like silent or nonsense mutations, do not affect the amino acid sequence in the same way.


What are the three types of mutation that can occur during protein synthesis?

The three types of mutations that can occur during protein synthesis are point mutations, frameshift mutations, and missense mutations. Point mutations involve a change in a single nucleotide, which can lead to a different amino acid being incorporated. Frameshift mutations result from the insertion or deletion of nucleotides, shifting the reading frame and altering the entire protein sequence. Missense mutations specifically refer to point mutations that change one amino acid to another, potentially affecting the protein's function.


How does a mutation change the events at the ribosome?

Mutations can alter the sequence of amino acids in a protein, which can affect the protein's structure and function. This can impact the protein's ability to interact with the ribosome and other molecules involved in protein synthesis, potentially leading to changes in the efficiency or accuracy of protein production.


What is a change in the DNA sequence that also changes the protein in codes for?

A change in the DNA sequence that alters the protein it encodes is called a mutation. This can occur through various types of mutations, such as point mutations, insertions, or deletions, which can lead to changes in the amino acid sequence of the resulting protein. Such alterations can affect the protein's structure and function, potentially leading to diseases or phenotypic variations. Examples include sickle cell disease, where a single nucleotide change results in a different amino acid in hemoglobin.


What is a sensible mutation?

A sensible mutation, commonly referred to as a "synonymous mutation," is a change in a DNA sequence that does not alter the amino acid sequence of the resulting protein. This occurs because multiple codons can code for the same amino acid due to the redundancy of the genetic code. While these mutations do not affect the protein's structure or function, they can still influence gene expression or regulation in subtle ways. Overall, sensible mutations are considered neutral in terms of their impact on protein function.

Related Questions

Describe how gene mutations affect protein production.?

gene mutations can affect protein production through various mutations as nonsense mutations are any genetic mutation that leads to the RNA sequence becoming a stop codon. missense mutations are mutations that changes an amino acid from one to another. Slient mutations are mutations  that dont affect the protein at all.


Why does an insert mutation usually cause more defects during protein synthesis than a point mutation?

Insertion mutations can affect many amino acids in the protein.An insertion mutation usually causes more defects during protein synthesis than point mutation because an insertion mutation will affect many amino acids in the protein.


Which type of mutation would only affect one amino acidwhich type of mutation would only affect one amino acid?

A missense mutation is the type that would only affect one amino acid in a protein sequence. This occurs when a single nucleotide change in the DNA sequence results in the substitution of one amino acid for another in the corresponding protein. This alteration can potentially impact the protein's function, depending on the role of the altered amino acid. Other mutations, like silent or nonsense mutations, do not affect the amino acid sequence in the same way.


Why does the order of amino acid acids affect the structure of a protein?

The order of amino acids can affect the protein's shape.


Why does an insertion mutation usually cause defects during protein synthesis than a point mutation?

Insertion mutations can affect many amino acids in the protein.An insertion mutation usually causes more defects during protein synthesis than point mutation because an insertion mutation will affect many amino acids in the protein.


What are the three types of mutation that can occur during protein synthesis?

The three types of mutations that can occur during protein synthesis are point mutations, frameshift mutations, and missense mutations. Point mutations involve a change in a single nucleotide, which can lead to a different amino acid being incorporated. Frameshift mutations result from the insertion or deletion of nucleotides, shifting the reading frame and altering the entire protein sequence. Missense mutations specifically refer to point mutations that change one amino acid to another, potentially affecting the protein's function.


Why can missenes mutations not have an effect on protein function?

Say the part of the gene that is mutated does not change the amino acid sequence of the protein made through the mRNA; hydrophobic amino acid stays hydrophobic. We have many of these small nucleotide polymorphisms in our genomes and they are useful trackers of human migrations, for instance.


What is the difference between point and non-synonymous mutation?

A point mutation is a change in a single nucleotide in the genetic code, while a non-synonymous mutation is a type of point mutation that causes an amino acid change in the resulting protein. Non-synonymous mutations can affect the function of the protein, while synonymous mutations do not change the amino acid sequence.


How can mutations affect protein synthesis in cells What is the result?

Mutations can result in changes to the DNA sequence, leading to changes in the mRNA sequence during transcription. This can cause changes in the amino acid sequence during translation, potentially altering the structure and function of the resulting protein. The result can be a dysfunctional or altered protein, affecting the cell's ability to carry out its normal functions.


Why can some gene mutatuions be harmful while others have no effect?

Let's consider a simple example: protein-coding genes. Mutations, or changes in the DNA sequence of the gene, can alter the amino acid sequence of the protein it codes for, if the new sequence translates into different amino acids. Because the genetic code is degenerate, some amino acids are specified by multiple codons, so some mutations may not alter the amino acid sequence at all. Such mutations, called synonymousmutations, have no affect on the protein. Mutations that alter the amino-acid sequence of the protein, called non-synonymousmutations, may or may not have an affect. Most proteins can tolerate some changes to that sequence and not be significantly affected, but if the sequence change is large enough, or occurs at a critical point so that the structure of the protein is significantly altered, then the protein may become non-functional. If that protein is essential to an organism, such a mutation may be lethal.


How does a mutation change the events at the ribosome?

Mutations can alter the sequence of amino acids in a protein, which can affect the protein's structure and function. This can impact the protein's ability to interact with the ribosome and other molecules involved in protein synthesis, potentially leading to changes in the efficiency or accuracy of protein production.


How could error during transcription affect the protein that produced?

Errors during transcription can lead to mutations in the messenger RNA (mRNA) sequence, which could result in changes to the amino acid sequence of the protein being produced. This altered amino acid sequence can affect the protein's structure and function, potentially rendering it non-functional or with altered activity. Additionally, the error may also cause premature termination of the protein synthesis, resulting in a truncated or incomplete protein.