Then the corresponding side of the DNA will be tgccaattgattcg.
When this side is transcribed, the resulting RNA will look like ugccaauugauucg.
in DNA, each base pairs up with only one other base
You can predict the base sequence of one strand of DNA if you know the sequence of the other strand because DNA strands are complementary. Adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). This complementary base pairing allows the sequence of one strand to dictate the sequence of the other, enabling accurate predictions of the base sequence.
The complementary base sequence of a DNA strand is formed by pairing adenine (A) with thymine (T) and cytosine (C) with guanine (G). For the template strand TTGCACG, the complementary sequence would be AACGTGC.
Since A pairs with T, and G pairs with C, then the sequence of bases in the strand of DNA being copied determines the sequence of bases in the newly copied strand. The bases are complementary (A gives T and G gives C when copied).
A=t c=g
The base sequence CAGACT corresponds to the DNA strand, and it would be complementary to the RNA strand with the sequence GUCUGA. Therefore, the original strand is the DNA strand.
in DNA, each base pairs up with only one other base
TGCA
The mRNA sequence generated from the DNA strand tgacgca would be acugcgu. This is because mRNA is complementary to the DNA template strand, so DNA base T pairs with mRNA base A, DNA base G pairs with mRNA base C, DNA base A pairs with mRNA base U, and DNA base C pairs with mRNA base G.
You can predict the base sequence of one strand of DNA if you know the sequence of the other strand because DNA strands are complementary. Adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). This complementary base pairing allows the sequence of one strand to dictate the sequence of the other, enabling accurate predictions of the base sequence.
A TG CAGATTCTCTAAG
The complementary base sequence of a DNA strand is formed by pairing adenine (A) with thymine (T) and cytosine (C) with guanine (G). For the template strand TTGCACG, the complementary sequence would be AACGTGC.
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.
If the base sequence on one strand of DNA is A-T-G-C, then the complementary strand would have the sequence T-A-C-G. In DNA, adenine pairs with thymine and guanine pairs with cytosine.
The 2nd strand matching DNA refers to the strand that can pair with the original DNA sequence through complementary base pairing. In DNA replication, this matching strand is synthesized by DNA polymerase according to the sequence on the original template strand.
tcaa --remember a attracts t while c attracts g
The sequence on the strand of the helix is TACCGGATC.