There are 6 moles of nitrate ions in 2 moles of magnesium nitrate. This is because there are 3 nitrate ions (NO3-) in each formula unit of magnesium nitrate (Mg(NO3)2). So, 2 moles of Mg(NO3)2 would contain 6 moles of nitrate ions.
To find the number of moles in 13.5 grams of magnesium nitrate, you need to divide the given mass by the molar mass of magnesium nitrate. The molar mass of magnesium nitrate (Mg(NO3)2) is 148.31 g/mol. Moles of magnesium nitrate = 13.5 grams / 148.31 g/mol ≈ 0.091 moles
Mg2+(s) + 2HNO3(l)= Mg(NO3)2(aq) + H2(g) since the only mole value given is 8 I must assume this is the limiting reactant. Because of the 2:1 ratio of Nitric acid to Magnesium Nitrate, meaning there must be 2 moles Nitric acid for every 1 mole Magnesium Nitrate formed, 4 moles of Magnesium nitrate will be formed.
There are four nitrate ions in each formula unit of Ca(NO3)2.4H2O. Therefore, with 2 moles of Ca(NO3)2.4H2O, there are 8 moles of nitrate ions. This amounts to approximately 4.82 x 10^24 nitrate ions.
I assume that is 28.0 grams.28.0 grams MgCl2 (1 mole MgCl2/95.21 grams)= 0.294 moles magnesium chloride==========================Now,One mole Mg 2+ = 0.294 moles Mg 2+ ions=============================2 moles Cl - = 0.588 moles Cl - ions=========================
One formula unit of MgBr2 has three ions; one Mg2+ ion and two Br- ions. One mole of MgBr2 formula units has one mole of Mg2+ ions and two moles of Br- ions, for a total of three moles of ions.
There are 0.13 moles in 20 grams of magnesium nitrate.
To find the number of moles in 13.5 grams of magnesium nitrate, you need to divide the given mass by the molar mass of magnesium nitrate. The molar mass of magnesium nitrate (Mg(NO3)2) is 148.31 g/mol. Moles of magnesium nitrate = 13.5 grams / 148.31 g/mol ≈ 0.091 moles
Mg2+(s) + 2HNO3(l)= Mg(NO3)2(aq) + H2(g) since the only mole value given is 8 I must assume this is the limiting reactant. Because of the 2:1 ratio of Nitric acid to Magnesium Nitrate, meaning there must be 2 moles Nitric acid for every 1 mole Magnesium Nitrate formed, 4 moles of Magnesium nitrate will be formed.
Calcium Nitrtae is Ca(NO3)2 and so there are two moles of nitrate per mole of calcium nitrate. Thus there are 2 x 2.50 = 5.0 moles of nitrate present.
There are four nitrate ions in each formula unit of Ca(NO3)2.4H2O. Therefore, with 2 moles of Ca(NO3)2.4H2O, there are 8 moles of nitrate ions. This amounts to approximately 4.82 x 10^24 nitrate ions.
2.4088 x 1024 nitrate ions
To find the number of moles of nitrate ion in calcium nitrate, first calculate the molar mass of calcium nitrate (Ca(NO3)2). This is 164.09 g/mol. Divide the given mass (5.600 g) by the molar mass to get the number of moles, which is 0.034 moles. Since there are two nitrate ions in one calcium nitrate molecule, multiply the number of moles by 2 to get the number of moles of nitrate ions, which is 0.068 moles.
When one mole of sodium nitrate (NaNO3) is added to water, it dissociates into one mole of sodium ions (Na+) and one mole of nitrate ions (NO3-). So, one mole of sodium nitrate produces two moles of solute particles in total when dissolved in water.
I assume that is 28.0 grams.28.0 grams MgCl2 (1 mole MgCl2/95.21 grams)= 0.294 moles magnesium chloride==========================Now,One mole Mg 2+ = 0.294 moles Mg 2+ ions=============================2 moles Cl - = 0.588 moles Cl - ions=========================
Two Chloride ions (2Cl-) ions are needed with their -1 charge on each one to cancel out the +2 charge of the single Magnesium ion (Mg2+). So Magnesium Chloride would have the chemical formula: MgCl2
One formula unit of MgBr2 has three ions; one Mg2+ ion and two Br- ions. One mole of MgBr2 formula units has one mole of Mg2+ ions and two moles of Br- ions, for a total of three moles of ions.
1,11 moles of magnesium have 26,97855 g.