Moles of solute/ kg of solvent = 2 molal solution
The answer is 0,505.
Molality is calculated by dividing the number of moles of solute by the mass of the solvent in kilograms. In this case, the solution has 3 moles of glucose dissolved in 6 kg of water. Therefore, the molality (m) is 3 mol / 6 kg = 0.5 mol/kg. Thus, the molality of the solution is 0.5 m.
Molality (m) is calculated by dividing the number of moles of solute by the mass of the solvent in kilograms and is expressed in mol/kg. The formula for molality is: [ molality (m) = \frac{moles\ of\ solute}{mass\ of\ solvent\ in\ kg} ]
To calculate the molality of a solution, you need to know the mass of the solvent (in kilograms) in which the solute is dissolved. Molality (m) is defined as the number of moles of solute per kilogram of solvent. If you only have the number of moles of glucose (3 moles), you cannot determine the molality without the mass of the solvent. Please provide the mass of the solvent for a complete calculation.
Molality (m) is calculated using the formula ( m = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} ). For a solution with 6 moles of CaCl₂ dissolved in 3 kg of water, the molality would be ( m = \frac{6 \text{ mol}}{3 \text{ kg}} = 2 \text{ mol/kg} ). Therefore, the molality of the solution is 2 mol/kg.
The amount of dissolved substance in a solution is called the concentration of the solution. This can be expressed in various units such as molarity, molality, or weight/volume percentage.
Molality =moles of solute/kilograms of solvent Moles of solute =2
The answer is 0,505.
The molality of a solution is calculated by dividing the moles of solute by the mass of the solvent in kilograms. In this case, the molality of the CaCl2 solution would be 2 mol/kg, as 6 mol of CaCl2 dissolved in 3 kg of water results in a molality of 2 mol/kg.
The molality of a solution is calculated by dividing the moles of solute by the mass of the solvent in kilograms. In this case, with 2 moles of NaOH dissolved in 10 kg of water, the molality would be 0.2 mol/kg.
The correct molality of the solution can be calculated using the formula: molality = (moles of solute) / (mass of solvent in kg) Given that 0.100 mol of CHCl3 is dissolved in 400.0 g (0.400 kg) of toluene, the molality of the solution is 0.250 m.
To calculate molality, we first need to find the moles of AgClO4 and the moles of solvent, C6H6. Calculate moles of AgClO4: 75.2 g / molar mass of AgClO4 Calculate moles of C6H6: 885 g / molar mass of C6H6 Then, molality (m) = moles of solute / kg of solvent. Divide the moles of AgClO4 by the kg of C6H6 to find the molality of the solution.
The molality of a solution is calculated by dividing the moles of solute by the mass of the solvent in kg. In this case, the moles of NaCl is 3.0 and the mass of water is 1.5 kg. Therefore, the molality of the solution is 2.0 mol/kg.
Dilute solution: a solution with a small amount of solute dissolved in a solvent. Concentrated solution: a solution with a large amount of solute dissolved in a solvent.
To find the molality, we first calculate the moles of Na2SO4: 10.0g Na2SO4 * (1 mol Na2SO4 / 142.04g Na2SO4) = 0.0705 moles Na2SO4. Then, molality is calculated as moles of solute (Na2SO4) / kilograms of solvent (water): 0.0705 mol / 1.000 kg = 0.0705 mol/kg, which is the molality of the solution.
The molality of a solution is calculated by dividing the moles of solute by the mass of the solvent in kilograms. First, convert the volume of the solvent from milliliters to liters (1000 ml = 1 L). Then calculate the molality using the formula: molality = moles of solute / (mass of solvent in kg).
2 m