6.02 x 10^23. A mole will never change.
100/150.158 is 0.666 moles
To find the mass of argon in grams for 100 moles, you can use the molar mass of argon, which is approximately 40 grams per mole. Therefore, the mass of 100 moles of argon would be calculated as follows: 100 moles × 40 g/mole = 4000 grams. Thus, there are 4000 grams of argon in 100 moles.
There would be 0.75 moles in 1 liter of solution. You have 100 mL which is in fact 0.1 liters. so you would have 0.1 of 0.75 moles. 0.1 x 0.75 = 0.075 moles.
To determine how many liters of a 4M lithium bromide (LiBr) solution can be made from 100 grams of LiBr, we first need to calculate the number of moles in 100 grams. The molar mass of lithium bromide is approximately 86.84 g/mol, so 100 grams corresponds to about 1.15 moles. A 4M solution contains 4 moles of solute per liter, thus 1.15 moles can produce approximately 0.29 liters (1.15 moles ÷ 4 moles/L). Therefore, 100 grams of lithium bromide can make about 0.29 liters of a 4M solution.
The numbers of moles in 100 kg of sodium is 4 349,76.
100/150.158 is 0.666 moles
Subtract.
95,474 moles
3 pencils to each calculator
To find the mass of argon in grams for 100 moles, you can use the molar mass of argon, which is approximately 40 grams per mole. Therefore, the mass of 100 moles of argon would be calculated as follows: 100 moles × 40 g/mole = 4000 grams. Thus, there are 4000 grams of argon in 100 moles.
To calculate the number of moles of sodium borohydride in 100 mg, you need to know the molar mass of the compound, which is 37.83 g/mol. First, convert 100 mg to grams (0.1 g), then divide by the molar mass to get the number of moles, which is approximately 0.0026 moles.
They would be 2.10
To find the number of moles of phosphorus atoms in 100 grams of P4S10, we first need to determine the molar mass of P4S10 which is 284.26 g/mol. Next, we calculate the number of moles of P4S10 in 100 grams by dividing 100 g by the molar mass to get 0.352 moles of P4S10. Since there are 4 phosphorus atoms in each P4S10 molecule, there are 0.352 moles x 4 = 1.41 moles of phosphorus atoms in 100 grams of P4S10.
The atomic weight of magnesium is 24.31; therefore, the number of moles in 100 gm is 100/24.31 = 4.11, to the justified number of significant digits.
A gross of pencils is 144 pencils.
There would be 0.75 moles in 1 liter of solution. You have 100 mL which is in fact 0.1 liters. so you would have 0.1 of 0.75 moles. 0.1 x 0.75 = 0.075 moles.
100 moles of NaCl would lower the freezing point more than 100 moles of sugar. This is because NaCl dissociates into more particles in solution compared to sugar, resulting in a greater depression of the freezing point due to colligative properties.