answersLogoWhite

0

🎒

Roman Numerals

Questions and answers related to the symbols used by the ancient Romans to represent numbers. These include the numerals: I, V, X, L, C, D and M.

14,167 Questions

What is the roman numeral for 1234567?

When writing large numbers in roman numerals, numbers that are in parenthesis represents "times 1000". Therefore, 1234567 would be written in roman numerals as (MCCXXXIV)DLXVII.

How do you write one billion in roman numerals?

(M)M

Numerals in brackets indicate multiplication by a thousand and superscript numerals indicate multiplication by that particular numeral:

(M)M = 1000*1000*1000 = 1,000,000,000

What is Roman Numeral 12000?

MMMMMMMMMMMM

Improved Answer:-

(XII) = 1000*12 = 12000

What is 1000.000 in roman numerals?

Write as (M) or as M with a horizontal line over. It is equal to saying 1000*1000.

1000000 = 1000 x 1000 = (M).

What is this date in roman numerals vii ix mmix?

Find the Rules section at the bottom of any page on the Insolvo website, click on it, copy the address of the page and add a forward slash followed by the current date according to the GMT+3 time zone in MM_DD_YYYY format?

How is 990 written in roman numerals?

In today's modern conversion it is CMXC but the Romans themselves would have probably wrote it out simply as XM (-10+1000 = 990)

Can you make nine out of l l l l l l by only adding 5 lines?

You need to add the lines in such a way that they SPELL "nine," not that they add up to make a total of nine lines. It's a trick question. Simply add a diagonal line from top left to bottom right to the first two vertical lines and you have the letter "N." Then leave the third vertical alone as it is already the letter "I." Then do the same thing you did to the first two lines to the fourth and fifth lines for the second "N." Finally, add three horizontal lines to the last vertical line to make the letter "E" and, shazam, you have N-I-N-E.

How do you write 65.3 in roman numerals?

Roman numerals do not include decimals although the Romans did use fractions to a limited extent.

What is 30-07-76 in Roman Numerals?

30-07-76 in Roman numerals is written as XXX-VII-LXXVI.

What is Roman Numeral LXVlll?

68

http://www.web40571.clarahost.co.uk/roman/num1.htm

For next time.

What are two ways of adding 89.5 to 1676.5 and two ways of subtracting 89.5 from 1676.5 but working out all four calculation from start to finish in Roman numerals?

The rules as we now know them today governing the Roman numeral system had absolutely nothing to do with the ancient Romans whatsoever because they were introduced during the Middle Ages long after the collapse of the Roman Empire but we can extrapolate from historical sources such as for instance 'History of Mathematics' volume 2 by David Eugene Smith first published in 1925 and ISBN 0486 204 308 that the ancient Romans would have probably worked out the given figures as in any of the following formats:-

MDCLXXVIS+LXXXVIIIIS = MDCCLXVI => 1676.5+89.5 = 1766

MDCLXXVIS+SXC = MDCCLXVI => 1676.5+(-0.5-10+100) = 1766

MDCLXXVIS-LXXXVIIIIS = MDLXXXVII => 1676.5-89.5 = 1587

MDCLXXVIS-SXC = MDLXXXVII => 1676.5-(-0.5-10+100) = 1587

Note that the Roman numeral for 0.5 is S and that in mathematics -(-0.5-10+100) changes to +0.5+10-100

What are the Roman numerals from 1 to 1 million?

The entire sequence would consume 83mb worth of characters.

The first 100 are as follows:

1-10: i, ii, iii, iv, v, vi, vii, viii, ix, x

11-20: xi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx

21-30: xxi, xxii, xxiii, xxiv, xxv, xxvi, xxvii, xxviii, xxix, xxx

31-40: xxxi, xxxii, xxxiii, xxxiv, xxxv, xxxvi, xxxvii, xxxviii, xxxix, xl

41-50: xli, xlii, xliii, xliv, xlv, xlvi, xlvii, xlviii, xlix, l

51-60: li, lii, liii, liv, lv, lvi, lvii, lviii, lix, lx

61-70: lxi, lxii, lxiii, lxiv, lxv, lxvi, lxvii, lxviii, lxix, lxx

71-80: lxxi, lxxii, lxxiii, lxxiv, lxxv, lxxvi, lxxvii, lxxviii, lxxix, lxxx

81-90: lxxxi, lxxxii, lxxxiii, lxxxiv, lxxxv, lxxxvi, lxxxvii, lxxxviii, lxxxix, xc

91-100: xci, xcii, xciii, xciv, xcv, xcvi, xcvii, xcviii, xcix, c

Thereafter, the sequence continually repeats, first prefixed with a 'c' until we reach 'cc', for 200. Then repeat again with another prefixed 'c' until we reach 'ccc' for 300. We prefix one more 'c' until we reach 'cccxcix' (399). 400 is represented by 'cd', which becomes the prefix for another sequence until 'cdxcix' (499). 500 is 'd', which begins a new repetition of all the numbers from 1-499, prefixed with 'd'. 999 is 'cmxcix'.

1000 is 'm', which begins the entire sequence again, until 'mm' (2000), and 'mmm' (3000). The last possible number is 'mmmcmxcix' (3999).

That's as far as we can go using this system (no symbol may repeat more than 3 times in succession). From this point on we must switch to the original symbols for 'm' and 'd' that begins with 'c|ᴐᴐc|ᴐc|ᴐ|ᴐ' (4000) and repeatedly counts from 1 to 999 using this prefix.

Under this system, 'm' is replaced with 'c|ᴐ' (1000) and 'd' is replaced with '|ᴐ' (500).

5000 is represented by '|ᴐᴐ' (the additional 'ᴐ' multiplies 500 by 10).

6000 is '|ᴐᴐc|ᴐ' (5000 + 1000).

7000 is '|ᴐᴐc|ᴐᴐ|ᴐ' (5000 + 1500 + 500). The additional 'ᴐ' in 'c|ᴐᴐ' adds 500 to 1000. An alternative would be to use the prefix '|ᴐᴐc|ᴐc|ᴐ' (5000 + 1000 + 1000), which is probably correct, but my program always subtracts the highest possible value, so I always use the former notation.

8000 is '|ᴐᴐc|ᴐᴐc|ᴐ|ᴐ' (5000 + 1500 + 1000 + 500) or '|ᴐᴐc|ᴐc|ᴐc|ᴐ' (5000 + 1000 + 1000 + 1000).

9000 is 'c|ᴐcc|ᴐᴐ' (10,000 - 1000).

10,000 is 'cc|ᴐᴐ'. Each extra 'c' and 'ᴐ' (together) multiply the value by a factor of 10. It's easier to think of the extra 'c' and 'ᴐ' symbols as ellipsis enclosing the value. This can be extended to give 'ccc|ᴐᴐᴐ' (100,000) and finally 'cccc|ᴐᴐᴐᴐ' (1,000,000).

To give an idea of this system, the final 100 numbers are as follows:

999901-999910: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐx

999911-999920: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxx

999921-999930: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxx

999931-999940: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxl

999941-999950: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxli, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxliii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxliv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐl

999951-999960: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐli, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐliii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐliv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlx

999961-999970: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxx

999971-999980: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxx

999981-999990: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxc

999991-1000000: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxci, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxciii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxciv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcix, cccc|ᴐᴐᴐᴐ

These symbols can be extended to multiply the value by a factor of 10, such that

What is November 30 2012 in roman numerals?

November 30, 2012 is written as "XXX.XI.MMXII" in Roman numerals.

What is the roman numerals for 76 000?

_L_X_X_VM

Romans did not need to count that high.

The above is a modern version with underscores added to increase their value by a thousand.

L to _L 50,000

X to _x 10000

V to _V 5000

Improved Answer:-

76,000 in Roman numerals is (LXXVI) which means 1,000*76 = 76,000

How do i write twenty in roman numerals?

To write twenty in Roman numerals, you simply write the letter X.

What is the Arabic numbers for 1859?

The Arabic numbers for 1859 are 1859, the Roman numerals for 1859 are MDCCCLIX.

What is roman numerals for 9-12-2010?

The Roman numerals for 9-12-2010 are IX-XII-MMX.

What is roman numeral cxxiv?

The Roman numeral CXXIV represents the number 124.