This is a little tricky if you don't know how to do it. The crank is actually on piece of plastic molded. It is held onto the shaft by a keeper that snaps onto the back part of the handle. It is a little trick to get off with standard tools but a flat head screw driver usually work.
Push the plastic door panel back away from the crank you should be able to see the keeper snapped over the plastic part of the crank that goes onto the shaft. The keeper is sort of a circular spring with an opening. Find and flat head screw driver that will part the opening in the spring far enough to slide it off. The crank handle pulls straight off.
How much oil does a 4.6 ford engine hold?
In a Ford EXPEDITION :
With engine oil filter change :
The 4.6 litre V8 engine takes ( 6.0 U.S. quarts )
How can I open the doors from the inside of my 1996 ford explorer after disengaging the child lock?
Make sure the door lock is set to the unlocked position, then pull on the door handle.
The Blend door is attached to the air flow sytem behind your dash. This is a BIG plastic box (BPB) that feeds the vents on your dash. The blend door is a small rectangular plastic piece, attached to the BPB that redirects air flow. Your's has broken in the closed position. Problem is that you can't replace the blend door - it comes as one piece. When you see it, you'll quickly ask yourself why such an important part is made so cheaply. The part is expensive and the labor is more expensive.
Getting the Parts: The best that you can do is call a dealer parts counter; get the part number and ask them to search for a dealer with the part in inventory - you don't care where. Write down several (if there are several) who have it on the shelf. Call them all and get their best price versus paying the list. No dealer wants parts on the shelf and most will either sell at cost or cost + 20%.
Doing the Repairs: If you know a good backyard mechanic, they might be able to do the job - However, check out Queegebo's site where he has a detailed step by step guide including diagrams and images that show every detail of this process. https://www.queegebo.com/content/view/31/27/
Otherwise, you should expect to spend anywhere from $600 and up to have the shop do it. Lot's of labor.
How do you change the oil filter a fiesta tdci?
Here we go again - This question has been asked here dozens of times ----
The oil filter on the 1.4tdci is mounted on the right-hand side of the engine block (as you look in under the bonnet) and is in a black plastic housing which unscrews to expose a replaceable paper element filter. The filter housing points upwards at a slight angle, and looks like a fat black bottle with a hexagonal cap.
To get at it, first remove the front section of the air pipe which passes over it. This section of pipe can be taken out by removing the single screw and flexing the end of it out of the bracket above the radiator, then twisting and pulling it out of the connecting collar next to the air-filter.
Stuff some rag or kitchen roll around the base of the filter housing.
I find a 11/16" socket fits the hexagon, so a 27mm socket should fit. I read that this diesel engine is actually a Peugeot design, and Peugeot, being cleverer than Ford, seem to use those sizes where Metric or Imperial will both fit - for instance, the sump plug can be removed with a spark-plug socket, which can be a new 21mm or old 7/16" Whitworth.
Use a socket and extension and unscrew the complete housing. It'll take bit of gentle force to get it moving, and because it's plastic, it tends to flex. The housing may come off complete with the paper filter plugged into it.
The new filter will come with a new rubber-band seal which fits into a groove above the screw-thread. Push the new filter into the housing, offer it up to the engine and rote it until the plastic lug drops into its socket. Then screw the housing in by hand for a few turns to ensure it isn't cross-threaded, then tighten it with the socket spanner. Replace the air hose. Then use that kitchen roll to wipe that black oil off your hands!
Start the engine and ensure that the housing isn't leaking. (It won't be).
Go for a cup of tea.
What side is even driver side or pass on ford 6 liter diesel?
I'm not a mechanic / technician but I believe on a Ford DIESEL
V8 engine the cylinders are numbered :
firewall
7 - 8
5 - 6
3 - 4
1 - 2
front of vehicle
So , DRIVERS SIDE
What is meaning of code p0620 for ford expedition 2004 v.8?
Trouble code P0620 means:Generator control circuit malfunction
Where is bank 2 on 1997 expedition 4.6 v8?
Oxygen Sensor There are actually (4) O2 sensors on your truck. If you look inside the wheel wells behind the fender liner, right about where the frame is one O2 sensor, the other is underneath the truck about half way back in relation to the transmission. If you see where the exhaust joints together, you went about 6" too far.
When you start looking at the O2 sensors, they are normally numbered something like "Bank 1 Sensor 1" Bank 1 is on the passenger side; Bank 2 is on the driver's side. Sensor 1 is the upstream sensor (near the frame, between the block and the cat) and Sensor 2 is near the Y-pipe (downstream of the cat).
Normally it is the upstream sensors (sensor 1) that go first. They see the harshest conditions. You will need; Oxygen Sensor Socket Anti-Seized Penetrating Oil Sometimes it will take 15 minutes or take a few hours it depends on your luck…
Why won't a Ford Expedition XLT start?
My neighbor had this problem. He went to the trouble of randomly replacing the starter. It did not work. He had it towed to his mechanic who said the car had a secondary solenoid that had gone bad. If you don't have votage at the starter motor, and the fuses are all ok, you might check the secondary solenoid. _______________________________________________________ Diagnosis: Engine Won't Start or Run By Larry Carley c2007
WHEN AN ENGINE WON'T START Every engine requires four basic ingredients to start: sufficient cranking speed, good compression, adequate ignition voltage (with correct timing) and fuel (a relatively rich air/fuel mixture initially). So any time an engine fails to start, you can assume it lacks one of these four essential ingredients. But which one? To find you, you need to analyze the situation. If the engine won't crank, you are probably dealing with a starter or battery problem. Has the starter been acting up? (Unusual noises slow cranking, etc.). Is this the first time the engine has failed to crank or start, or has it happened before? Have the starter, battery or battery cables been replaced recently? Might be a defective part. Has the battery been running down? Might be a charging problem. Have there been any other electrical problems? The answers to these questions should shed some light on what might be causing the problem. If an engine cranks but refuses to start, it lacks ignition, fuel or compression. Was it running fine but quit suddenly? The most likely causes here would be a failed fuel pump, ignition module or broken overhead cam timing belt. Has the engine been getting progressively harder to start? If yes, consider the engine's maintenance and repair history. STARTING YOUR DIAGNOSIS What happens when you attempt to start the engine? If nothing happens when you turn the key, check the battery to determine its state of charge. Many starters won't do a thing unless there is at least 10 volts available from the battery. A low battery does not necessarily mean the battery is the problem, though. The battery may have been run down by prolonged cranking while trying to start the engine. Or, the battery's low state of charge may be the result of a charging system problem. Either way, the battery needs to be recharged and tested. If the battery is low, the next logical step might be to try starting the engine with another battery or a charger. If the engine cranks normally and roars to life, you can assume the problem was a dead battery, or a charging problem that allowed the battery to run down. If the battery accepts a charge and tests okay, checking the output of the charging system should help you identify any problems there. A charging system that is working properly should produce a charging voltage of somewhere around 14 volts at idle with the lights and accessories off. When the engine is first started, the charging voltage should rise quickly to about two volts above base battery voltage, then taper off, leveling out at the specified voltage. The exact charging voltage will vary according to the battery's state of charge, the load on the electrical system, and temperature. The lower the temperature, the higher the charging voltage. The higher the temperature, the lower the charging voltage. The charging range for a typical alternator might be 13.9 to 14.4 volts at 80 degrees F, but increase to 14.9 to 15.8 volts at subzero temperatures. If the charging system is not putting out the required voltage, is it the alternator or the regulator? Full fielding the alternator to bypass the regulator should tell you if it is working correctly. Or, take the alternator to a parts store and have it bench tested. If the charging voltage goes up when the regulator is bypassed, the problem is the regulator (or the engine computer in the case of computer-regulated systems). If there is no change in output voltage, the alternator is the culprit. Many times one or more diodes in the alternator rectifier assembly will have failed, causing a drop in the unit's output. The alternator will still produce current, but not enough to keep the battery fully charged. This type of failure will show up on an oscilloscope as one or more missing humps in the alternator waveform. Most charging system analyzers can detect this type of problem. ENGINE CRANKING PROBLEMS If the engine won't crank or cranks slowly when you attempt to start or jump start the engine (and the battery is fully charged), you can focus your attention on the starter circuit. A quick way to diagnose cranking problems is to switch on the headlights and watch what happens when you attempt to start the engine. If the headlights go out, a poor battery cable connection may be strangling the flow of amps. All battery cable connections should be checked and cleaned along with the engine-to-chassis ground straps. Measuring the voltage drop across connections is a good way to find excessive resistance. A voltmeter check of the cable connections should show no more than 0.1 volt drop at any point, and no more than 0.4 volts for the entire starter circuit. A higher voltage drop would indicate excessive resistance and a need for cleaning or tightening. Slow cranking can also be caused by undersized battery cables. Some cheap replacement cables have small gauge wire encased in thick insulation. The cables look the same size as the originals on the outside, but inside there is not enough wire to handle the amps. If the headlights continue to shine brightly when you attempt to start the engine and nothing happens (no cranking), voltage is not reaching the starter. The problem here is likely an open or misadjusted park/neutral safety switch, a bad ignition switch, or a faulty starter relay or solenoid. Fuses and fusible links should also be checked because overloads caused by continuous cranking or jump starting may have blown one of these protective devices. If the starter or solenoid clicks but nothing else happens when you attempt to start the engine, there may not be enough amps to spin the starter. Or the starter may be bad. A poor battery cable, solenoid or ground connection, or high resistance in the solenoid itself may be the problem. A voltage check at the solenoid will reveal if battery voltage is passing through the ignition switch circuit. If the solenoid or relay is receiving battery voltage but is not closing or passing enough amps from the battery to spin the starter motor, the solenoid ground may be bad or the contacts in the solenoid may be worn, pitted or corroded. If the starter cranks when the solenoid is bypassed, a new solenoid is needed, not a starter. Most engines need a cranking speed of 200 to 300 rpm to start, so if the starter is weak and can't crank the engine fast enough to build compression, the engine won't start. In some instances, a weak starter may crank the engine fast enough but prevent it from starting because it draws all the power from the battery and does not leave enough for the injectors or ignition system. If the lights dim and there is little or no cranking when you attempt to start the engine, the starter may be locked up, dragging or suffering from high internal resistance, worn brushes, shorts or opens in the windings or armature. A starter current draw test will tell you if the starter is pulling too many amps. A good starter will normally draw 60 to 150 amps with no load on it, and up to 200 amps or more while cranking the engine. The no load amp draw depends on the rating of the starter while the cranking amp draw depends on the displacement and compression of the engine. Always refer to the OEM specs for the exact amp values. Some "high torque" GM starters, for example, may have a no load draw of up to 250 amps. Toyota starters on four-cylinder engines typically draw 130 to 150 amps, and up to 175 amps on six-cylinder engines. An unusually high current draw and low free turning speed or cranking speed typically indicates a shorted armature, grounded armature or field coils, or excessive friction within the starter itself (dirty, worn or binding bearings or bushings, a bent armature shaft or contact between the armature and field coils). The magnets in permanent magnet starters can sometimes break or separate from the housing and drag against the armature. A starter that does not turn at all and draws a high current may have a ground in the terminal or field coils, or a frozen armature. On the other hand, the start may be fine but can't crank the engine because the engine is seized or hydrolocked. So before you condemn the starter, try turning the engine over by hand. Won't budge? Then the engine is probably locked up. A starter that won't spin at all and draws zero amps has an open field circuit, open armature coils, defective brushes or a defective solenoid. Low free turning speed combined with a low current draw indicates high internal resistance (bad connections, bad brushes, open field coils or armature windings). If the starter motor spins but fails to engage the flywheel, the cause may be a weak solenoid, defective starter drive or broken teeth on the flywheel. A starter drive that is on the verge of failure may engage briefly but then slip. Pull the starter and inspect the drive. It should turn freely in one direction but not in the other. A bad drive will turn freely in both directions or not at all. ENGINE CRANKS BUT WILL NOT START When the engine cranks normally but won't start, you need to check ignition, fuel and compression. Ignition is easy enough to check with a spark tester or by positioning a plug wire near a good ground. No spark? The most likely causes would be a failed ignition module, distributor pickup or crank position (CKP) sensors A tool such as an Ignition System Simulator can speed the diagnosis by quickly telling you if the ignition module and coil are capable of producing a spark with a simulated timing input signal. If the simulated signal generates a spark, the problem is a bad distributor pickup or crankshaft position sensor. No spark would point to a bad module or coil. Measuring ignition coil primary and secondary resistance can rule out that component as the culprit. Module problems as well as pickup problems are often caused by loose, broken or corroded wiring terminals and connectors. Older GM HEI ignition modules are notorious for this. If you are working on a distributorless ignition system with a Hall effect crankshaft position sensor, check the sensor's reference voltage (VRef) and ground. The sensor must have 5 volts or it will remain permanently off and not generate a crank signal (which should set a fault code). Measure VRef between the sensor power supply wire and ground (use the engine block for a ground, not the sensor ground circuit wire). Don't see 5 volts? Then check the sensor wiring harness for loose or corroded connectors. A poor ground connection will have the same effect on the sensor operation as a bad VRef supply. Measure the voltage drop between the sensor ground wire and the engine block. More than a 0.1 voltage drop indicates a bad ground connection. Check the sensor mounting and wiring harness. If a Hall effect crank sensor has power and ground, the next thing to check would be its output. With nothing in the sensor window, the sensor should be "on" and read 5 volts (VRef). Measure the sensor D.C. output voltage between the sensor signal output wire and ground (use the engine block again, not the ground wire). When the engine is cranked, the sensor output should drop to zero every time the shutter blade, notch, magnetic button or gear tooth passes through the sensor. No change in voltage would indicate a bad sensor that needs to be replaced. If the primary side of the ignition system seems to be producing a trigger signal for the coil but the voltage is not reaching the plugs, a visual inspection of the coil tower, distributor cap, rotor and plug wires should be made to identify any defects that might be preventing the spark from reaching its intended destination. ENGINE CRANKS AND HAS SPARK BUT WILL NOT START If you see a good hot spark when you crank the engine, but it won't start, check for fuel. The problem might be a bad fuel pump On an older engine with a carburetor, pump the throttle linkage and look for fuel squirting into the carburetor throat. No fuel? Possible causes include a bad mechanical fuel pump, stuck needle valve in the carburetor, a plugged fuel line or fuel filter. On newer vehicles with electronic fuel injection, connect a pressure gauge to the fuel rail to see if there is any pressure in the line. No pressure when the key is on? Check for a failed fuel pump, pump relay, fuse or wiring problem. On Fords, don't forget to check the inertia safety switch which is usually hidden in the trunk or under a rear kick panel. The switch shuts off the fuel pump in an accident. So if the switch has been tripped, resetting it should restore the flow of fuel to the engine. Lack of fuel can also be caused by obstructions in the fuel line or pickup sock inside the tank. And don't forget to check the fuel gauge. It is amazing how many no starts are caused by an empty fuel tank. There is also the possibility that the fuel in the tank may be heavily contaminated with water or overloaded with alcohol. If the tank was just filled, bad gas might be causing the problem. On EFI-equipped engines, fuel pressure in the line does not necessarily mean the fuel is being injected into the engine. Listen for clicking or buzzing that would indicate the injectors are working. No noise? Check for voltage and ground at the injectors. A defective ECM may not be driving the injectors, or the EFI power supply relay may have called it quits. Some EFI-systems rely on input from the camshaft position sensor to generate the injector pulses. Loss of this signal could prevent the system from functioning. Even if there is fuel and it is being delivered to the engine, a massive vacuum leak could be preventing the engine from starting. A large enough vacuum leak will lean out the air/fuel ratio to such an extent that the mixture won't ignite. An EGR valve that is stuck wide open, a disconnected PCV hose, loose vacuum hose for the power brake booster, or similar leak could be the culprit. Check all vacuum connections and listen for unusual sucking noises while cranking. ENGINE HAS FUEL AND SPARK BUT WILL NOT START An engine that has fuel and spark, no serious vacuum leaks and cranks normally should start. The problem is compression. If it is an overhead cam engine with a rubber timing belt, a broken timing belt would be the most likely cause especially if the engine has a lot of miles on it. Most OEMs recommend replacing the OHC timing belt every 60,000 miles for preventative maintenance, but many belts are never changed. Eventually they break, and when they do the engine stops dead in its tracks. And in engines that lack sufficient valve-to-piston clearance as many import engines and some domestic engines do, it also causes extensive damage (bent valves and valvetrain components & sometimes cracked pistons). Overhead cams can also bind and break if the head warps due to severe overheating, or the cam bearings are starved for lubrication. A cam seizure may occur during a subzero cold start if the oil in the crankcase is too thick and is slow to reach the cam (a good reason for using 5W-20 or 5W-30 for winter driving). High rpm cam failure can occur if the oil level is low or the oil is long overdue for a change. With high mileage pushrod engines, the timing chain may have broken or slipped. Either type of problem can be diagnosed by doing a compression check and/or removing a valve cover and watching for valve movement when the engine is cranked. A blown head gasket may prevent an engine from starting if the engine is a four cylinder with two dead cylinders. But most six or eight cylinder engines will sputter to life and run roughly even with a blown gasket. The gasket can, however, allow coolant to leak into the cylinder and hydrolock the engine.
Will the glass part of it open? if so you can snake down through the panel and manaully engage the door to open and remove the panel and correct the promblem. hop you got a pry bar!
WHere is the relay fuse located on a 96 neon?
the relay fuses are in the engine compartment on driver side with the mini fuses
What causes a 97 expedition instrument cluster to not work?
I had a blown 25 amp fuse in the fuse box under the hood mounted on drivers side fender, it was labeled for power outlet, I believe it was fuse #11. I removed the other 25 amp fuse for the other power outlet and installed it where the burnt fuse was and my instrument cluster worked. It was not labeled for the instrument cluster.
I would suspect a defective universal joint on the driveshaft. Can also be a bad wheel bearing or axle bearing. And lastly, a problem with the rear differential. Check the gear lube level in the differential first.
On mine if you hold down buttons 3 & 5 it turns off rear control. You have to do this every time you "power on"
How do you replace the headlight bulb located on a 2003 Ford Expedition?
Open the hood. On the top of the headlamp assembly are two 3/8 inch bolts. Remove them. Between the two (down in a hole) is another 3/8 inch bolt; it's very long, as it screws into the bottom of the assembly. Remove it, too. Slide the entire assembly forward. It's tricky because the edges get caught on the surrounding structures, but it will slide out. Remove the round rubber stopper from behind the assembly to expose the lamp. Rotate the lamp slightly and remove it. Carefully lift the retaining clips and slide the lamp off the plug. Be careful not to touch the glass on the replacement lamp; oil from your skin can cause halogen lamps to fail. Slide the new lamp onto the plug until it clicks, then put everything back in reverse order.
The bolts are 10mm and the lamps rotate downward.
You should have a auto technician look at your car, call the oil place and let them know your situation.... Get it in writing.... get them to put in writing that they messed up and goto a mechanic, not there's, and make sure everything is ok. any reputable place will be ok with this and will pay for it.mechanic will find the code the car is finding fault with and let you know if it is anything serious and needs to be fixed.if so let oil place know and get them to call mechanic for authorization of payment. but you give ok to do work after they ok with you and mechanic moneys. now get issue fixed and have a good life if this is not an option unplug pos. of battery for 30 seconds and reconnect. this usually clears out codes on the cars computer. if service lite comes on again go see mechanic to find out issue and do above without help of oil place obviously. when talking to oil place be nice til you need to be firm. good luck, gig1
Where is the number 3 cylinder on a 03 expedition?
Both the 4.6L and the 5.4L are the same firing order. Cylinder number 3 is located on the passengers side 3rd from the front of the radiator to the back of the engine.
How do you reset the emergency fuel shut off switch?
In my experience,if you have located it,you should just have to push the white reset button.
How many quarts of oil does a expedition 5.4l 2009 need?
According to the 2009 Ford Expedition Owner Guide :
With engine oil filter change the 5.4 liter V8 engine takes ( 7.0 quarts )
Where are the spark plugs located for a 2005 Chevy Colorado i do not see the wires?
The Spark Plugs are located under the resonator box in the center of the engine (its the rectangular black box on top of the engine)
Where is the emergency fuel shut off inertia switch on a 1997 dodge Dakota?
Dodge does not use inertia/reset switches.
Dodge does not use inertia/reset switches.
How tall is the 2004 Ford Expedition?
The height of the 2004 Ford Expedition is 6 ft. 5.6 in. (77.6 in.).