answersLogoWhite

0

Mitsubishi 3000 GT

The Mitsubishi 3000 GT was the rebadged export version of the Mitsubishi GTO, a high-performance luxury sports car manufactured from 1990 to 2001. It featured a 6G72 3.1 L V6 engine and a front/four-wheel drive.

645 Questions

What are the model years of the Mitsubishi 3000GT show some pictures please?

I need to set the valve timing on a 1997 Mitsubishi 3000GT SOHC non-turbo charged. Can you send picture please

What size are the Speakers on a 1992 Mitsubishi 3000GT?

the front door speakers are 6 1/2'' and the back speakers are 6x9's and there is a dash tweeter

*Applies to all 3000GT's 1991 thru 1999. Good luck mounting a 6 1/2 inch speaker in the doors. In fact, good luck mounting a 6 3/4 inch in the doors. I will give you $50 cash if you mount speakers readily available from your typical audio store in the stock housing. Mitsubishi, in all of their wisdom, had Infinity make a 7 inch speaker that is like, the only speaker in the world that fits the 3000GT's and Dodge Stealth exclusively with the stock mounting plate. What is required to mount a universal speaker size(6.5" and 6.75") inside a 3000GT or Dodge Stealth, is custom fabrication, because they will not fit! Same with the dash tweeter. JBL used to make a replacement that fit, but discontinued that model. You will have to custom mount the dash tweeters inside the stock housing.

Can I have the money please if I install the speaker?

Only Kidding but if it's a 7inch speaker that you need instead of a 6.5 or 6.75 inch speaker you can look at marine speakers. The Alpine SPR-M70 is a 7 inch 2 way speaker. There are others as well but Just thought I would give you an example. But you are correct the area for the speaker is off, but you can get the common 6.5inch speakers in thee with out to much trouble.

How do you change the EGR valve on a 96 3000GT?

The EGR valve should be located towards the rear and center of the engine. Just remove the hoses and unbolt from the engine. Looks like a flying saucer or dashpot design

How to replace window regulator?

Disconnect negative cable at battery. Remove the inside door trim panel, remove film watershield, remove the door window glass assembly by lowering the window all the way, remove inside door handle and rods, unplug electrical mirror and regulator wires, remove the glass stabilizer bolt, then the 2 window glass retainer bolts, lift out the window glass, then remove the 4 regulator assembly bolts and wiggle the regulator out thru the opening. Reassemble in reverse order. Buy a Haynes Repair Manual for about $15 and save yourself some anguish! YFC

Where is the fuse for the cigarette lighter connection on a 1995 Mitsubishi 3000gt?

I've a '92 Mitsubishi 2.5 so I'm not sure would that make a difference but did you try slightly above the accelerator in the fuse box, the fifth fuse basically the top right? ( it's right at the corner) This fuse also does the electric wing mirrors. :) (15a)

How do you reset the fuel gauge on your 94 3000gt?

look up GTPRO

they specialize in 3000gts.

WWW.gtpro.com

What would cause a 93 3000GT to start but after running a little while it dies and you hear a little click from the console just before it dies then it wont restart any ideas?

the click was most likely a fuse blowing and could be the one that runs the fuel pump. as a fuel pump goes bad it takes more and more ampridge to make it run until it finaly over loads the fuse.

I had a similar thing happen on my Nissan maxima and it turned out to be the cam shaft position sensor. This was determined after the service engine soon light came on so ther was finally a code to read from the computer. I now have the same thing as you describe happening on my 3000gt vr-4. The dealer had it for 2 weeks and couldn't recreate it. No check engine light as of yet. I see your post was in June - did you ever figure out what it was?

The problem is your ECM module. Just Google your make and year of the car and type in "clicking behing the dash board". It will take you through how to repair the circuit board. All you need is to buy the capicators and solder them into place, or buy and new or used one. I bought the capicators at a local hobby shop and it worked! I have a 1991 3000GT Sl.

Why would only the dashboard lights not be working in a 1997 Mitsubishi 3000 GT SOHC and fuses have been checked?

I believe the dash lights and tailights share the same circut. check the tailight relay and fuse located in the engine compartment rt. side above headlight

What would cause a Mitsubishi 3000 GT to stall when you turn on the AC?

The AC pump is bad. When the AC is turned on the pump tries to turn, because it is bad the extra strain on the motor causes it to stall. Be carely this can break or through a belt. In short its like putting a "brake" on your motor.

How many starter relays are on a 1994 Mitsubishi 3000gt?

There is only one in the main power distribution center.

How do you change pistons on a Mitsubishi gto 3000?

Call a mechanic. This is not an "at home" type of repair. To replace pistons, you must tear the entire engine down, and replace all gaskets and bearings. I assume you are thinking of lower compression pistons for a turbo build up. Don't bother. Buy a complete engine with the turbo and duct work from a wreck, if available. You could spend more trying to rebuild yours.

How does a twin scroll turbocharger work?

Twin scroll turbine housing. The TST housing derives its name from the geometry of the exhaust gas inlet into the turbine. Two different-sized scrolls are generally used, a primary and a secondary. Typically, the primary is open for low-speed operation, and both for high-speed use. This creates the ability of the TST to be a small A/R housing at low speeds and a large A/R at higher speeds. TST designs are of merit in that they offer a better combination of low-speed response and high-end power. It would be difficult to configure the unit to control boost by effectively varying A/R. A wastegate is therefore still necessary to control boost pressure. Simplicity of the twin scroll turbine housing is its big selling point. [Source- "Maximum Boost" by Corky Bell] in my opinion ,predoinantly twin scroll housing is used n diesel turbocharging systems on the engines having more than 4 cylinders to reduce pulsasation of these engines . Additonaly , output of some cyliders will go one scroll and remaining in other to cut down pulsastations janmajay

Where is the fuel filter on a 1998 Mitsubishi 3000gt?

it's in the engine bay just behind the battery. you will have to remove the battery and the shelf it sit s on to get to it. you will see it mounted to the firewall.

Where is the flasher located on a Mitsubishi 3000GT?

On driver's side. Under the fuse box, pull out the carpeting from fram a little. Its there.

Is the Mitsubishi 3.0 liter a interference motor?

Mitsubishi 3.0 is a interference motorYes, 3.0 Mitsubishi is an interference motor

The Mitsubishi 3.0 engine is not an interference engine , if you tear the timing belt it will not hit the valves. you can confirm this with alldata

If your motor is the 12 valve motor you are safe, but the 24 valve version of the 3.0 is most definitely an interferance engine & if the water pump, timing belt, tensioner or any idlers fail your valves will be kissing the top of the pistons.....

Can you put a 3000gt vr4 engine in a 3000gt sl transmission?

Yes sure you can.

___________________________________________________

I wouldn't recommend it, if you are referring to the automatic in an sl, because, with all due respect (I'm a huge Mitsubishi fan), they were quite inferior with an average lifespan of 75,000-100,000 if you're lucky. If that's what you're asking I would DEFINITELY recommend using the getrag manual gearbox that were offered for the 3000gt's.

Why would a 1992 Mitsubishi 3000 gt not start no power changed ignition module installed new ECM still won't start?

Diagnosis: Engine Won't Start or Run

WHEN AN ENGINE WON'T START

Every engine requires four basic ingredients to start: sufficient cranking speed, good compression, adequate ignition voltage (with correct timing) and fuel (a relatively rich air/fuel mixture initially). So any time an engine fails to start, you can assume it lacks one of these four essential ingredients. But which one?

To find you, you need to analyze the situation. If the engine won't crank, you are probably dealing with a starter or battery problem. Has the starter been acting up? (Unusual noises slow cranking, etc.). Is this the first time the engine has failed to crank or start, or has it happened before? Have the starter, battery or battery cables been replaced recently? Might be a defective part. Has the battery been running down? Might be a charging problem. Have there been any other electrical problems? The answers to these questions should shed some light on what might be causing the problem.

If an engine cranks but refuses to start, it lacks ignition, fuel or compression. Was it running fine but quit suddenly? The most likely causes here would be a failed fuel pump, ignition module or broken overhead cam timing belt. Has the engine been getting progressively harder to start? If yes, consider the engine's maintenance and repair history.

STARTING YOUR DIAGNOSIS

What happens when you attempt to start the engine? If nothing happens when you turn the key, check the battery to determine its state of charge. Many starters won't do a thing unless there is at least 10 volts available from the battery. A low battery does not necessarily mean the battery is the problem, though. The battery may have been run down by prolonged cranking while trying to start the engine. Or, the battery's low state of charge may be the result of a charging system problem. Either way, the battery needs to be recharged and tested.

If the battery is low, the next logical step might be to try starting the engine with another battery or a charger. If the engine cranks normally and roars to life, you can assume the problem was a dead battery, or a charging problem that allowed the battery to run down. If the battery accepts a charge and tests okay, checking the output of the charging system should help you identify any problems there.

A charging system that is working properly should produce a charging voltage of somewhere around 14 volts at idle with the lights and accessories off. When the engine is first started, the charging voltage should rise quickly to about two volts above base battery voltage, then taper off, leveling out at the specified voltage. The exact charging voltage will vary according to the battery's state of charge, the load on the electrical system, and temperature. The lower the temperature, the higher the charging voltage. The higher the temperature, the lower the charging voltage. The charging range for a typical alternator might be 13.9 to 14.4 volts at 80 degrees F, but increase to 14.9 to 15.8 volts at subzero temperatures.

If the charging system is not putting out the required voltage, is it the alternator or the regulator? Full fielding the alternator to bypass the regulator should tell you if it is working correctly. Or, take the alternator to a parts store and have it bench tested. If the charging voltage goes up when the regulator is bypassed, the problem is the regulator (or the engine computer in the case of computer-regulated systems). If there is no change in output voltage, the alternator is the culprit.

Many times one or more diodes in the alternator rectifier assembly will have failed, causing a drop in the unit's output. The alternator will still produce current, but not enough to keep the battery fully charged. This type of failure will show up on an oscilloscope as one or more missing humps in the alternator waveform. Most charging system analyzers can detect this type of problem.

ENGINE CRANKING PROBLEMS

If the engine won't crank or cranks slowly when you attempt to start or jump start the engine (and the battery is fully charged), you can focus your attention on the starter circuit. A quick way to diagnose cranking problems is to switch on the headlights and watch what happens when you attempt to start the engine. If the headlights go out, a poor battery cable connection may be strangling the flow of amps. All battery cable connections should be checked and cleaned along with the engine-to-chassis ground straps.

Measuring the voltage drop across connections is a good way to find excessive resistance. A voltmeter check of the cable connections should show no more than 0.1 volt drop at any point, and no more than 0.4 volts for the entire starter circuit. A higher voltage drop would indicate excessive resistance and a need for cleaning or tightening.

Slow cranking can also be caused by undersized battery cables. Some cheap replacement cables have small gauge wire encased in thick insulation. The cables look the same size as the originals on the outside, but inside there is not enough wire to handle the amps.

If the headlights continue to shine brightly when you attempt to start the engine and nothing happens (no cranking), voltage is not reaching the starter. The problem here is likely an open or misadjusted park/neutral safety switch, a bad ignition switch, or a faulty starter relay or solenoid. Fuses and fusible links should also be checked because overloads caused by continuous cranking or jump starting may have blown one of these protective devices.

If the starter or solenoid clicks but nothing else happens when you attempt to start the engine, there may not be enough amps to spin the starter. Or the starter may be bad. A poor battery cable, solenoid or ground connection, or high resistance in the solenoid itself may be the problem. A voltage check at the solenoid will reveal if battery voltage is passing through the ignition switch circuit. If the solenoid or relay is receiving battery voltage but is not closing or passing enough amps from the battery to spin the starter motor, the solenoid ground may be bad or the contacts in the solenoid may be worn, pitted or corroded. If the starter cranks when the solenoid is bypassed, a new solenoid is needed, not a starter.

Most engines need a cranking speed of 200 to 300 rpm to start, so if the starter is weak and can't crank the engine fast enough to build compression, the engine won't start. In some instances, a weak starter may crank the engine fast enough but prevent it from starting because it draws all the power from the battery and does not leave enough for the injectors or ignition system.

If the lights dim and there is little or no cranking when you attempt to start the engine, the starter may be locked up, dragging or suffering from high internal resistance, worn brushes, shorts or opens in the windings or armature. A starter current draw test will tell you if the starter is pulling too many amps.

A good starter will normally draw 60 to 150 amps with no load on it, and up to 200 amps or more while cranking the engine. The no load amp draw depends on the rating of the starter while the cranking amp draw depends on the displacement and compression of the engine. Always refer to the OEM specs for the exact amp values. Some "high torque" GM starters, for example, may have a no load draw of up to 250 amps. Toyota starters on four-cylinder engines typically draw 130 to 150 amps, and up to 175 amps on six-cylinder engines.

An unusually high current draw and low free turning speed or cranking speed typically indicates a shorted armature, grounded armature or field coils, or excessive friction within the starter itself (dirty, worn or binding bearings or bushings, a bent armature shaft or contact between the armature and field coils). The magnets in permanent magnet starters can sometimes break or separate from the housing and drag against the armature.

A starter that does not turn at all and draws a high current may have a ground in the terminal or field coils, or a frozen armature. On the other hand, the start may be fine but can't crank the engine because the engine is seized or hydrolocked. So before you condemn the starter, try turning the engine over by hand. Won't budge? Then the engine is probably locked up.

A starter that won't spin at all and draws zero amps has an open field circuit, open armature coils, defective brushes or a defective solenoid. Low free turning speed combined with a low current draw indicates high internal resistance (bad connections, bad brushes, open field coils or armature windings).

If the starter motor spins but fails to engage the flywheel, the cause may be a weak solenoid, defective starter drive or broken teeth on the flywheel. A starter drive that is on the verge of failure may engage briefly but then slip. Pull the starter and inspect the drive. It should turn freely in one direction but not in the other. A bad drive will turn freely in both directions or not at all.

ENGINE CRANKS BUT WILL NOT START

When the engine cranks normally but won't start, you need to check ignition, fuel and compression. Ignition is easy enough to check with a spark tester or by positioning a plug wire near a good ground. No spark? The most likely causes would be a failed ignition module, distributor pickup or crank position (CKP) sensors

A tool such as an Ignition System Simulator can speed the diagnosis by quickly telling you if the ignition module and coil are capable of producing a spark with a simulated timing input signal. If the simulated signal generates a spark, the problem is a bad distributor pickup or crankshaft position sensor. No spark would point to a bad module or coil. Measuring ignition coil primary and secondary resistance can rule out that component as the culprit.

Module problems as well as pickup problems are often caused by loose, broken or corroded wiring terminals and connectors. Older GM HEI ignition modules are notorious for this. If you are working on a distributorless ignition system with a Hall effect crankshaft position sensor, check the sensor's reference voltage (VRef) and ground. The sensor must have 5 volts or it will remain permanently off and not generate a crank signal (which should set a fault code). Measure VRef between the sensor power supply wire and ground (use the engine block for a ground, not the sensor ground circuit wire). Don't see 5 volts? Then check the sensor wiring harness for loose or corroded connectors. A poor ground connection will have the same effect on the sensor operation as a bad VRef supply. Measure the voltage drop between the sensor ground wire and the engine block. More than a 0.1 voltage drop indicates a bad ground connection. Check the sensor mounting and wiring harness.

If a Hall effect crank sensor has power and ground, the next thing to check would be its output. With nothing in the sensor window, the sensor should be "on" and read 5 volts (VRef). Measure the sensor D.C. output voltage between the sensor signal output wire and ground (use the engine block again, not the ground wire). When the engine is cranked, the sensor output should drop to zero every time the shutter blade, notch, magnetic button or gear tooth passes through the sensor. No change in voltage would indicate a bad sensor that needs to be replaced.

If the primary side of the ignition system seems to be producing a trigger signal for the coil but the voltage is not reaching the plugs, a visual inspection of the coil tower, distributor cap, rotor and plug wires should be made to identify any defects that might be preventing the spark from reaching its intended destination.

ENGINE CRANKS AND HAS SPARK BUT WILL NOT START

If you see a good hot spark when you crank the engine, but it won't start, check for fuel. The problem might be a bad fuel pump

On an older engine with a carburetor, pump the throttle linkage and look for fuel squirting into the carburetor throat. No fuel? Possible causes include a bad mechanical fuel pump, stuck needle valve in the carburetor, a plugged fuel line or fuel filter.

On newer vehicles with electronic fuel injection, connect a pressure gauge to the fuel rail to see if there is any pressure in the line. No pressure when the key is on? Check for a failed fuel pump, pump relay, fuse or wiring problem. On Fords, don't forget to check the inertia safety switch which is usually hidden in the trunk or under a rear kick panel. The switch shuts off the fuel pump in an accident. So if the switch has been tripped, resetting it should restore the flow of fuel to the engine. Lack of fuel can also be caused by obstructions in the fuel line or pickup sock inside the tank. And don't forget to check the fuel gauge. It is amazing how many no starts are caused by an empty fuel tank.

There is also the possibility that the fuel in the tank may be heavily contaminated with water or overloaded with alcohol. If the tank was just filled, bad gas might be causing the problem.

On EFI-equipped engines, fuel pressure in the line does not necessarily mean the fuel is being injected into the engine. Listen for clicking or buzzing that would indicate the injectors are working. No noise? Check for voltage and ground at the injectors. A defective ECM may not be driving the injectors, or the EFI power supply relay may have called it quits. Some EFI-systems rely on input from the camshaft position sensor to generate the injector pulses. Loss of this signal could prevent the system from functioning.

Even if there is fuel and it is being delivered to the engine, a massive vacuum leak could be preventing the engine from starting. A large enough vacuum leak will lean out the air/fuel ratio to such an extent that the mixture won't ignite. An EGR valve that is stuck wide open, a disconnected PCV hose, loose vacuum hose for the power brake booster, or similar leak could be the culprit. Check all vacuum connections and listen for unusual sucking noises while cranking.

ENGINE HAS FUEL AND SPARK BUT WILL NOT START

An engine that has fuel and spark, no serious vacuum leaks and cranks normally should start. The problem is compression. If it is an overhead cam engine with a rubber timing belt, a broken timing belt would be the most likely cause especially if the engine has a lot of miles on it. Most OEMs recommend replacing the OHC timing belt every 60,000 miles for preventative maintenance, but many belts are never changed. Eventually they break, and when they do the engine stops dead in its tracks. And in engines that lack sufficient valve-to-piston clearance as many import engines and some domestic engines do, it also causes extensive damage (bent valves and valvetrain components & sometimes cracked pistons).

Overhead cams can also bind and break if the head warps due to severe overheating, or the cam bearings are starved for lubrication. A cam seizure may occur during a subzero cold start if the oil in the crankcase is too thick and is slow to reach the cam (a good reason for using 5W-20 or 5W-30 for winter driving). High rpm cam failure can occur if the oil level is low or the oil is long overdue for a change.

With high mileage pushrod engines, the timing chain may have broken or slipped. Either type of problem can be diagnosed by doing a compression check and/or removing a valve cover and watching for valve movement when the engine is cranked.

A blown head gasket may prevent an engine from starting if the engine is a four cylinder with two dead cylinders. But most six or eight cylinder engines will sputter to life and run roughly even with a blown gasket. The gasket can, however, allow coolant to leak into the cylinder and hydrolock the engine.

What viscosity oil do you put in the engine of a Mitsubishi 300 gt?

FOR MOST AMBIENT TEMPERATURE RANGES 10w/40 FULLY SYNTHETIC ENGINE OIL IS SUITABLE FOR THE MITSUBISHI 3000GT/GTO 3 LITRE V6 TWIN TURBO (6G72 ENGINE).

Mitsubishi 3000gt runs ruff not firing on 2cyl pulled wires on 3rd coil back made no change to tone of car changed coil pack still no fire on that coil pack changed again still no fire help?

Possibly bad Capacitors in the ECU. If you take the ECU out and open it up look for caps leaking on to the board. This is a typical issue with GTs and Stealths. Although ECUs are expensive the Caps are not and can be replaced. There are people out there that will do that for reasonable money. "Go to Team3s" http://www.team3s.com/ and look around join the forum its a great place for GT owners to get info. Post your questions and you will get tons of answers. Getting back to your question another way to test and see if it is your ECU is to take one out of another car that is running and put it in yours to see if it changes the way yours runs Good luck

What does the symbol on the far right corner of the speedometer mean?

red "aero"? if that's the one you mean then it means that it has a problem with the "active aero system" front or rear spoiler not operating correctly